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Abstract: It is suggested that the differences between the Hammerstein and Wiener models be
interpreted and understood in terms of the system eigenvalues. In particular, it is shown that the
Wiener representation should be preferred when the system dynamics vary with the operating point.
Conversely, when only the system gain varies with the operating point, Hammerstein models
generally outperform the Wiener representation. The paper also points out connections between
such models and the more general non-linear autoregressive model with exogenous inputs (NARX)
polynomial representation. From a practical control engineering point of view, the results presented
seem to be more helpful than other ways of distinguishing between such model types. The main
ideas are illustrated by means of three examples that use simulated and measured data.

1 Introduction

The identification of block-oriented models has attracted
great attention in the last three decades or so. Such models
are composed of two blocks, one is linear and dynamical,
the other is non-linear and static. The various types of
models differ in how such blocks are connected to each
other. This paper is concerned with the Hammerstein and
Wiener models which are illustrated in Fig. 1.
The interest in block-oriented models seems to have been

rekindled lately because of their usefulness in simple yet
apparently efficient control schemes [1, 2]. Regardless of
being useful in such applications, block-oriented models
are adequate to approximate a large class of non-linear
processes.
In order to take advantage of block-oriented models in

practical situations it is necessary to develop tools that
would 1) enable the user to obtain such models directly from
dynamical data, and also to 2) help choose which type of
representation is preferable given the features of the process
being modelled.
Many techniques have been put forward to handle the first

aforementioned issue. An early paper [3] has discussed the
identification of block-oriented models using non-para-
metric techniques, but more recently the emphasis seems to
lay on parametric methods. Many methods assume that
some aspect of the system is known a priori, such as the
gain [4] or the structure of the linear dynamical block [5].
The method discussed in [6] does not assume prior
knowledge but does assume that the input and output

signals are sampled at different rates and that the output is
oversampled. An interesting procedure has been recently
suggested by which the static non-linearity is estimated
from the same set of dynamical data used for identifying the
dynamical linear model [7]. Frequently, the precise
structure of the non-linearity is not assumed known but it
is required that the non-linearity admits a polynomial
representation [6, 8].

Although there are many available methods to identify
block-oriented models from data, it seems that the judicious
choice between the Hammerstein and Wiener models is an
issue greatly neglected in practical situations. For instance,
in the aforementioned works, no concrete justification is
given to support the choice of the model type.

The differences between the Hammerstein and Wiener
models have been studied and procedures to distinguish
between them have been developed, see [9] for a review and
[10] for a detailed description of parallel and multivariable
systems. However, it is noticed that although the differences
are mathematically shown, for instance in terms of Volterra
kernels or non-linear correlation functions, the interpret-
ation from an engineering point of view is far from obvious.
On the other hand, the tests that have been suggested to
distinguish between these models usually require specific
inputs which are not always achievable in practice. (Another
common situation is when a system is to be analysed and
modelled from an existing set of data which does not usually
attain the specific features required and no new tests are
possible.) Considering such reasons, it is not hard to see
why in practice no justification is given for choosing a
Hammerstein or a Wiener model for a given plant.

The main concern of this paper is to show that an
important dynamical difference between the Hammerstein
and Wiener models is reflected on how the eigenvalues of
such systems vary with the operating point. Because this
interpretation is based on basic concepts of control
engineering, it is believed that it will furnish a means by
which practitioners will be able to readily decide between a
Hammerstein or Wiener model without having to resort
to difficult-to-estimate functions, such as Volterra kernels.
The new interpretation has direct bearing in the practical
identification of real systems using such block-oriented
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models. As part of the analysis presented in this paper, it is
shown how the Hammerstein and Wiener models relate to
the more general non-linear autoregressive model with
exogenous inputs (NARX) polynomial representation. In
particular it is shown under which conditions a given NARX
polynomial model can be represented as a Hammerstein
and=or a Wiener model. This, of course, has theoretical
value in itself but not only that. In many practical instances
NARX polynomial models are already available [11, 12]
and to derive block-oriented counterparts from them could
be useful.

2 Background

Since the early days of non-linear identification it has been
pointed out that the block-oriented models are particular
cases of the more general NARX model that can be written
as [13]

yðkÞ¼F‘½yðk�1Þ; . . . ;yðk�nyÞ;uðk�dÞ . . .uðk�nuÞ;eðkÞ�
ð1Þ

where u(k) and y(k) are, respectively, the input and output
signals and e(k) accounts for uncertainties, possible noise
and unmodelled dynamics. In this paper F‘½�� is assumed
to be a polynomial-type function with non-linearity degree
‘ 2 Z

þ:
In particular, if the non-linearity f ð�Þ only acts on the

inputs of the ARX model, the result is a Hammerstein
model. Omitting the noise terms for the sake of clarity, we
have

yðkÞ ¼ a1yðk � 1Þ þ � � � þ anyyðk � nyÞ
þ f ½uðk � dÞ . . . uðk � nuÞ� ð2Þ

In the case of the Wiener model, the non-linearity acts on
both output and input of the ARX model. Moreover, the
inverse non-linearity acts on past values of the output.
Mathematically we have

yðkÞ ¼ f ½a1f�1ðyðk � 1ÞÞ þ � � � þ any f
�1ðyðk � nyÞÞ

þ b0uðk � dÞ þ � � � þ bnuuðk � nuÞ� ð3Þ

in which case it has been assumed that f is invertible as in
[4, 13].

Once the static function f ð�Þ is known, the identification
of Hammerstein models is straightforward. From the
knowledge of the static function, the internal signal can be
readily produced, thus vðkÞ ¼ f ðuðkÞÞ: Subsequently, an
autoregressive with an exogenous input (ARX) model
relating the output y(k) to the internal signal v(k) can be
obtained using standard linear techniques.

The static function f ð�Þ between the internal signal and
the output is also the static relationship between the input

and the output but for a constant factor, which is the gain of
the ARX model. If the DC gain of such a model is assumed
unity, then in the steady state �uuðkÞ ¼ �vvðkÞ and f ð�Þ is in fact
the static function between input and output. This function is
used to produce a graph of �yy� �uu ¼ �vv and linear regression
techniques can then be applied to obtain a function �vv ¼
gð�yyÞ: Of course, gð�Þ is an estimate of f�1ð�Þ in the range of
values considered.

Equation (1) can be expanded as the summation of
terms with degrees of non-linearity in the range ½ 1 ‘ �:
Each ðpþ mÞth-order term can contain a pth-order factor
in yðk � niÞ and an mth-order factor in uðk � niÞ and is
multiplied by a coefficient cp;mðn1; . . . ; nmÞ as follows.

yðkÞ ¼
X‘
m¼0

X‘�m

p¼0

Xny;nu
n1;nm

cp;mðn1; . . . ; nmÞ

�
Yp
i¼1

yðk � niÞ
Ym
i¼1

uðk � niÞ þ eðkÞ ð4Þ

where

Xny;nu
n1;nm

�
Xny
n1¼1

Xny
n2¼1

� � �
Xnu
nm¼1

ð5Þ

and the upper limit is ny if the summation refers to factors in
yðk � niÞ or nu for factors in uðk � niÞ: The moving average
part of the model is used during parameter estimation to
reduce bias and it is not taken into account in the analysis.
The model structure can be chosen using orthogonal
techniques [14, 15]. Suppose the model is asymptotically
stable and is excited by a constant input, then in the
steady state �yy ¼ yðk � 1Þ ¼ yðk � 2Þ ¼ � � � ¼ yðk � nyÞ;
�uu ¼ uðk � 1Þ ¼ uðk � 2Þ ¼ � � � ¼ uðk � nuÞ and equation
(4) can be rewritten as

�yy ¼
X‘
m¼0

X‘�m

p¼0

Xny;nu
n1;nm

cp;mðn1; . . . ; nmÞ�yy p �uum ð6Þ

The solution of (6) will yield the fixed points of model (4) for
the particular value of the input being used. The next two
definitions will be important in the remainder of the paper.

Definition 2.1: [16] The constants
Pny;nu

n1;nm cp;mðn1; . . . ; nmÞ
in (6) are the coefficients of the term clusters Oypum ;
which contain terms of the form ypðk � iÞumðk � jÞ for
mþ p � ‘; where i and j are any time lags. Such
coefficients are called cluster coefficients and are
represented as Sypum :

Definition 2.2: [17] The set of all possible terms of
the form ypðk � dÞumðk � jÞ for mþ p � ‘ is called a
d-cluster and is represented as Oy

p

d
um : The sum of all the

respective coefficients is referred to as the d-coefficient
and is represented as Sy

p

d
um :

In words, a term cluster is a set of terms of the same type
and the respective cluster coefficient is the summation of the
coefficients of all the terms of the corresponding cluster.
Hence, terms of the same cluster explain the same type of
non-linearity. Moreover, d-clusters are subsets of term
clusters that do depend on the lag of the output terms. For
instance, the terms yðk � 1Þuðk � 1Þ; yðk � 1Þuðk � 3Þ and
yðk � 2Þuðk � 2Þ all pertain to the term cluster Oyu: On the
other hand, the first two terms are members of the d-cluster
Oy1u

whereas the last term pertains to d-cluster Oy2u
:

Fig. 1 Block representations of models

a Hammerstein
b Wiener
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3 Analysis of block-oriented models

3.1 Hammerstein models

In the Hammerstein model, the internal signal is given by

vðk � iÞ ¼ f ‘ðuðk � iÞÞ; i ¼ 1; 2; . . . ; nu ð7Þ
where f ‘ is the static non-linearity of the model and is
assumed to have a polynomial approximation of degree ‘:
In the case where the model has a pure time delay equal to d,
then i ¼ d; d þ 1; . . . ; nu and the maximum lag in the input
variable for this case might be larger than for (7). The linear
block is a standard ARX model of the form

yðkÞ ¼
Xny
j¼1

yjyðk � jÞ þ
Xnv
i¼1

sivðk � iÞ ð8Þ

where yj and si are model parameters. Substituting (7) in (8)
yields

yðkÞ ¼
Xny
j¼1

yjyðk � jÞ þ
Xnu
i¼1

si f
‘ðuðk � iÞÞ ð9Þ

The local stability of a NARX polynomial model can be
assessed around an operating point ð�uu; �yyÞ verifying
the eigenvalues l of the jacobian matrix Df evaluated at
the operating point. The eigenvalues are the roots of the
equation det jlI � Df j ¼ 0; that can be expressed in
expanded form as

lny � D1l
ny�1 � � � � � Dny�1l� Dny

¼ 0 ð10Þ

where

D1 ¼
@yðkÞ

@yðk � 1Þ

����
ð�uu;�yyÞ

; . . . ;Dny
¼ @yðkÞ

@yðk � nyÞ

����
ð�uu;�yyÞ

It can be readily verified that for (9) Di ¼ y; i ¼ 1; 2; . . . ; ny:
In other words, the eigenvalues at a given operating point
are the roots of

lny � y1l
ny�1 � � � � � yny�1l� yny ¼ 0: ð11Þ

Because (11) is a polynomial with constant coefficients, its
roots are also constant. This points to the well-known fact
that the dynamics of Hammerstein models do not depend on
the operating point. As will be seen in the next Section, this
turns out to be an important difference with respect to
Wiener models.

3.2 Wiener models

In the Wiener model, the static non-linearity operates on the
internal signal to produce the output, that is yðkÞ ¼ f ‘ðvðkÞÞ:
It is assumed that f ‘ has an inverse over the operating range
of interest and that such an inverse accepts a polynomial
representation of degree ‘1 which shall be denoted by g‘1 ;
that is g‘1 � ð f̂f ‘Þ�1 and vðkÞ ¼ g‘1ðyðkÞÞ:
The dynamical model is

vðkÞ ¼
Xnv
j¼1

yjvðk � jÞ þ
Xnu
i¼1

siuðk � iÞ ð12Þ

After substitution the following holds

yðkÞ ¼ f ‘
Xnv
j¼1

yjvðk � jÞ þ
Xnu
i¼1

siuðk � iÞ
 !

ð13Þ

or in terms of input and output signals

yðkÞ ¼ f ‘
Xny
j¼1

yjg
‘1ðyðk � jÞÞ þ

Xnu
i¼1

siuðk � iÞ
 !

ð14Þ

The eigenvalues of a Wiener model linearised around
an operating point ð�uu; �yyÞ are also given by the solutions of
(10) with

Di ¼
@yðkÞ

@yðk � iÞ

����
ð�uu;�yyÞ

¼ @f ‘ðxÞ
@x

� @x

@yðk � iÞ

����
ð�uu;�yyÞ

¼ @f ‘ðxÞ
@x

����
ð�uu;�yyÞ

�yi
@g‘1ðzÞ
@z

@z

@yðk � iÞ

����
ð�yyÞ

¼ ‘f ‘�1ðxÞjð�uu;�yyÞ � yi‘1g
‘1�1ðzÞjð�yyÞ

¼ ‘f ‘�1ðSyg
‘1ð�yyÞ þ Su �uuÞ � yi‘1g

‘1�1ð�yyÞ ð15Þ

where x stands for the argument of f ð�Þ and z for the
argument of gð�Þ as seen in (14), and

Sy ¼
Xny
j¼1

yj; Su ¼
Xnu
i¼1

si ð16Þ

As can be seen from (15), the coefficients Di and therefore
the model eigenvalues do depend on ð�uu; �yyÞ; the operating
point.

3.3 Connections with NARX polynomials

The static non-linearities in Hammerstein and Wiener
models of a same process should be, in principle, the
same provided the DC gain of the respective linear blocks
are equal. In this respect, there is no loss of generality if
such DC gains are taken to be unity [4].

Hammerstein and Wiener models cannot exhibit output
multiplicity, i.e. a given fixed input value, �uu will produce
one single output in the steady state, �yy: Hammerstein
models, on the other hand, may display input multiplicity,
i.e. more than one input value can yield the same output in
the steady state if f ‘ is not invertible. In principle, the
same applies to Wiener models in the more general setting
yðkÞ ¼ f ‘½vðkÞ�; but it is often required to write such models
as a NARX polynomial (see (3) or (14)), in which case it is
required that f ‘ be invertible, and then no input multi-
plicities are allowed.

It is well known that while Hammerstein and Wiener
models have identical steady-state performances, the related
dynamics can be quite different. This can be readily
explained by observing that the eigenvalues of the Jacobian
matrix of a Hammerstein model are constant and therefore
do not depend on the operating point, see (11). On the other
hand, the eigenvalues of a Wiener model Jacobian matrix
depend on the operating point at which the Jacobian is
evaluated, as can be seen from (15). This remark should
prove helpful in choosing between Hammerstein and
Wiener models.

As for the relations of Hammerstein and Wiener
models with NARX polynomials the following remarks
are helpful.

1. Since the presence of any cluster of the form
Oypum ; p>1; 8m will yield a model with output multiplicity
[18], then no NARX polynomial models with clusters of that
type can be reduced to Hammerstein or Wiener models.
2. NARX polynomials for which all non-linear clusters are
of the form Oum ; 8m can be written as a Hammerstein model
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only if the lags of a given multinomial are the same, as for
example in uðk � 1Þuðk � 1Þ:
3. A NARX polynomial with terms from cross-clusters of
the type Oyum ; 8m has eigenvalues that depend on the
operating point [19], like in a Wiener model. Thus, NARX
models with such clusters would suggest aWiener model for
the system. The terms in such clusters can have different
time lags, but in the case of Oum clusters the same restriction
on time lags for Hammerstein models applies.
4. The static function of a NARX polynomial with terms
from cross-clusters of the type Oypum ; 8m and p ¼ 1 is a
rational function whereas if p ¼ 0 the static function
becomes polynomial.
5. Item 3 can be used to help decide between a Hammerstein
or a Wiener model, if a NARX polynomial is available.
Even if the lags of a NARX polynomial model do not permit
direct derivation of Hammerstein and Wiener analogues
according to items 2 and 3, if the only difficulty are the lags
then good approximate block-oriented models should exist.

4 Results

The main point of this paper is to discuss important
dynamical differences between Hammerstein and Wiener
models in the context of practical system identification.
The main results, therefore, are applicable to any procedure
employed to identify such models. Some details on the
particular procedure followed in this paper are provided in
the Appendix.

For the sake of comparison, the root mean square error
(RMSE) was computed for the identified models

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
k¼1ðyðkÞ � ŷyðkÞÞ2

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN

k¼1ðyðkÞ � �yyÞ2
q ð17Þ

where ŷyðkÞ is the free-run predicted signal, �yy is the average
value of the measured signal y(k) over the estimation data
window.

4.1 Example 1

This example considers a non-linear first-principle model of
a polymerisation reaction taking place in a jacketed
continuous stirred-tank reactor (CSTR) [20]. The reaction
is the free-radical polymerisation of methyl methacrylate
(MMA) with azo-bis-isobutyro-nitrile (AIBN) as initiator
and toluene as solvent. The volumetric flow rate of the
initiator was considered as the model input, u(k), and the
number-average molecular weight as the output y(k).
The equations, parameter values and sampling time were
taken following [20] to produce the data presented in Fig. 2.

From the first half of the set of data in Fig. 2, the
following static function �yy ¼ f ð�uuÞ was obtained (see
Appendix for details)

�̂vv�vv ¼� 0:164� 106 �uu3 þ 0:947� 106 �uu2

� 1:492� 106 �uuþ 1:390� 106
ð18Þ

where �yy was replaced by �vv: It is important to appreciate the
reason for this change. For Hammerstein models, the output
of such a function is the intermediate signal vðkÞ ¼ f̂f ½uðkÞ�:
That is the reason for using v as the output of the static
model (18). The estimated and original static non-linearities
are compared in Fig. 3. It is worth pointing out that the best fit
was attained within the range 2:2� 104 < yðkÞ< 2:6� 104

where 60% of the (dynamical) data are contained. A better
fit outside this range could be attained by means of weighted
least squares imposing a greater weight outside the range.

Alternatively, the auxiliary model could be made more non-
linear not only by increasing the degree of non-linearity of
polynomial (18) but by choosing a different representation,
such as exponential model or a network model rather than a
polynomial.

Hence, using (18) and input data u(k) the intermediate
signal v̂vðkÞ can be produced. Such a signal is the input
to the linear dynamical model. Then, with the data set
ZN ¼ ½ v̂vðkÞ yðkÞ � (first half of the set of data in Fig. 2) and
standard techniques [21] the ARX part of Hammerstein
model was obtained

yðkÞ ¼ 2:248yðk � 1Þ � 1:800yðk � 2Þ
þ 0:5098yðk � 3Þ þ 0:01721v̂ðk � 2Þ
þ 0:01444v̂ðk � 3Þ þ 0:01074v̂ðk � 1Þ ð19Þ

where the order ny ¼ 3 was selected by pole-zero analysis
[22]. The free-run-prediction of this model is compared to
validation data in Fig. 4.

To obtain a Wiener model, a function �vv ¼ g‘1ð�yyÞ must be
estimated which is an inverse of (18). Hence using (18) to

Fig. 2 Normalised identification data. Both input and output
sequences were divided by 0.03006

a Input
b Output

Fig. 3 Comparison of static functions: theoretical, static non-
linearity (18) and function (20) that is used as an inverse function
in the context of Wiener modelling. The RMSE values of the curve
fits are RMSE ¼ 0:020 and RMSE ¼ 0:030; respectively
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produce data and performing the change of variables
�vv ! �yy; �uu ! �vv; and employing standard numerical regression
techniques, the following equation was obtained (see Fig. 3):

�̂vv�vv ¼ 2:23� 10�12 �yy2 � 5:77� 10�6 �yyþ 3:834 ð20Þ
From input data u(k) and intermediate variable v(k) obtained
passing the output signal y(k) through (20), the following
ARX model was determined

v̂ðkÞ ¼ 2:187v̂ðk � 1Þ � 1:622vðk � 2Þ
þ 0:4098v̂ðk � 3Þ þ 0:03179uðk � 1Þ
� 0:8892� 10�2uðk � 2Þ þ 0:215� 10�2uðk � 3Þ

ð21Þ
where the order of this model was selected as for the
Hammerstein case. The result of the free-run-prediction of
the Wiener model is presented in Fig. 4.

4.2 Example 2

The set-up used in this example consists of a small electrical
heater. The temperature of the heater is the output, y(k), and
was measured by a thermocouple. The sampling time was
Ts ¼ 6s: Both steady-state and dynamical tests were
performed but only the data measured during the dynamical
test, shown in Fig. 5, were used in the identification. It is
worth pointing out that both the static non-linear and the
dynamical linear blocks are estimated exclusively from
these data.
The steady-state relationship between the electrical

power, which is the input u(k), and the final temperature
does not present two possible states for the same input. This,
as discussed in the Appendix, means that all clusters of the
form Oypum for p>1 irrespective of m should be left out of
the model. The choice of which clusters to include in the
model that will be used for static function estimation is not
critical as long as the main guidelines discussed in
Section 3.3 and in the Appendix are taken into account.
One possible approximation to the static function is simply

�vv ¼ 0:0566�uu2 ð22Þ
and is compared to the measured one in Fig. 6. It is pointed
out that the actual static non-linearity shown in Fig. 6 was
measured only for the sake of comparison and that (22) was
estimated from the set of dynamical data.

Proceeding as in the previous example, the following
model was obtained

yðkÞ ¼ 1:1729yðk � 1Þ þ 0:0887v̂vðk � 1Þ
� 0:2750yðk � 2Þ þ 0:0127v̂vðk � 2Þ ð23Þ

The free-run simulation of model (23) with (22) is compared
to the measured data in Fig. 7. In the case of a Wiener
model, the static function is the same and (22) can be
rewritten as

�yy ¼ 0:0566�vv2 ð24Þ

Clearly, this expression cannot be used analytically to
obtain the intermediary signal v(k) from measured data.
To work around this problem, �vv is varied in the same range
of the input, u(k), i.e. 0 � �vv � 1 and the corresponding
values of �yy are calculated by �yy ¼ 0:0566�vv2: The next step is
to use standard numerical regression techniques to fit a
function �vv ¼ g‘1ð�yyÞ; as was done in Example 4.1. For the
present example such a function is

Fig. 4 Validation data and free-run simulation of Hammerstein
model (18) and (19) for which RMSE ¼ 0:0354; and free-run
simulation of Wiener model (18) and (21) for which RMSE ¼
0:0387

Fig. 5 First part of the dynamical test used as identification data.
The second part was used for validation. Both model blocks are
estimated from these measured data

Fig. 6 Static functions: measured (only used for the sake of
comparison, not for identification) and estimated, RMSE ¼ 0:054;
see (22)
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�̂vv�vv ¼ 21501:422�yy7 � 34353:954�yy6 þ 22160:557�yy5

� 7405:473�yy4 þ 1373:354�yy3 � 143:372�yy2

þ 10:034�yyþ 0:040 ð25Þ

where the degree of such a polynomial was chosen based on
the standard correlation index. The performance of this
regression model is shown in Fig. 8.

As before, using ZN ¼ ½uðkÞ v̂vðkÞ� the following model
was found:

v̂vðkÞ¼2:2823v̂vðk�1Þþ0:0702uðk�1Þ
�1:6677v̂vðk�2Þþ0:3838v̂vðk�3Þ�0:0684uðk�2Þ

ð26Þ

The measured output and the free-run simulation of the
Wiener model (24) and (26) are compared in Fig. 9.

The Hammerstein model clearly outperforms the Wiener
model. This was somewhat expected since previous results
revealed that this system has eigenvalues that are not
sensitive to the operating point [17, 19]. Then, as mentioned
in Section 3.3, the Hammerstein model is more adequate to
represent this kind of system.

4.3 Example 3

To emphasize the last result in Example 2, we considered
another lab thermal process that has eigenvalues that do
depend on the operating point according to the following
equation [17]:

lð�uuÞ ¼ 0:9122� 0:6029� 10�2 �uu

1� 0:493� 10�3 �uu
ð27Þ

The best estimated Hammerstein model (in terms of
RMSE) is

�̂vv�vv ¼ 0:6185�uu

0:0878þ 5:5353� 10�3 �uu
ð28Þ

yðkÞ ¼ � 1:307yðk � 1Þ þ 0:4247yðk � 2Þ
þ 0:1772v̂vðk � 1Þ � 0:05896v̂vðk � 2Þ ð29Þ

The best estimated Wiener model (in terms of RMSE) is

v̂vðkÞ ¼ 0:7621v̂vðk � 1Þ þ 0:4247v̂vðk � 2Þ
þ 0:2317uðk � 1Þ þ 0:007258uðk � 2Þ; ð30Þ

Fig. 7 Validation data set: measured data set and free-run
simulation of Hammerstein model composed by (22) and (23).
RMSE ¼ 0:093

Fig. 8 Plot of inverse static non-linearity and its estimated model
�̂vv�vv ¼ ĝg‘1ð�yyÞ: The function marked (—) was taken from the estimated
model (24) and plotted with the dependent variable on the x-axis
(indicated by �yy in the figure). The function �̂vv�vv ¼ ĝg‘1ð�yyÞ; see (25), is
estimated by standard curve fitting techniques, RMSE ¼ 0:056

Fig. 9 Validation data set: measured data and free-run
simulation of Wiener model composed by (24) and (26). RMSE ¼
0:2819

Fig. 10 Free-run-prediction of Hammerstein model (28)
ðRMSE ¼ 0:176Þ; Wiener model (30) ðRMSE ¼ 0:080Þ and
measured validation data from a thermal process system whose
eigenvalues depend on the operating point. The peak occurring at
sample 46 is an artifact
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and (28) with �vv replacing �uu and �yy replacing �vv: The free-run-
predictions of bothmodels are presented in Fig. 10 and reveal
that the Wiener model is superior to its Hammerstein
counterpart. This was expected since, based on previous
analyses, it is known that the eigenvalues of this process do
vary with the operating point, see (27).

5 Discussion and conclusions

Example 1 illustrates an interesting point. On the one hand,
the dynamical performance of both the Hammerstein and
Wiener models is very similar as can be verified from Fig. 4.
This would lead to the conclusion that the process does not
have eigenvalues that vary with the operating point. If this
were the case, the Wiener model would be expected to
outperform the Hammerstein counterpart. On the other
hand, however, it is crucial to see that the quality of fit of the
inverse function (20), used in the context of Wiener
modelling, is 50% worse than for the static function (18).
That means that in the case of Wiener modelling the
intermediate signal is worse than for Hammerstein model-
ling because the former will use (20) and the latter (18) to
produce such signals. Nonetheless, the overall performance
is somewhat the same. This means that the Wiener model
did compensate for the loss in using (20). In fact, using prior
knowledge to fit static functions f ð�Þ and g‘1ð�Þ of
comparable accuracy and subsequently using such functions
to obtain new block oriented models, the identified Wiener
model has an RMSE which is 11% smaller than that of the
Hammerstein counterpart. It should also be mentioned that
even if the structure of the linear dynamic blocks of the
Hammerstein and Wiener models are not constrained to
have the same structure, the best Wiener model still
outperforms the best Hammerstein counterpart for this
process. All this evidence together with the results
developed in Section 3 would suggest that the process
does have eigenvalues that vary with the operating point.
In fact, a careful examination of the Jacobian matrix of the
model used [20] will confirm such a hypothesis.
Concerning Example 2, it is important to notice that

whereas the static function is the same and that the accuracy
of the estimated inverse (25), see Fig. 8, is comparable to the
estimated static function (24), see Fig. 6, the performance of
the Hammerstein model is clearly better. This confirms, as
widely accepted, that both representations are not comple-
tely equivalent.
Thus, based on the results in Section 2 and on the fact that

the Hammerstein model performed better than the Wiener
model in Example 2, it can be concluded that for this system
the pole locations do not vary with the operating point.
Indeed, this fact has been recently established by indepen-
dent means [19].
Finally, in Example 3 the Wiener model clearly out-

performed the Hammerstein counterpart, hence indicating a
process with eigenvalues that vary with the operating point.
For such a system this had been previously verified [17],
hence confirming that the eigenvalues do vary with the
operating point. One might ask how can this be, given that
the poles of the Wiener model are clearly constant, since
(26) does not change. The point to notice is that the dynamic
output of the dynamical block in the case of Wiener models
after passing through the static non-linearity will give the
overall impression of varying dynamics, as can be seen from
(10) and (15).
An important aspect of the present paper was to establish

connections between block-oriented (Hammerstein and
Wiener) models and NARX models. One of the advantages
of this analysis is that it helps understand and interpret some

of the main differences between the Hammerstein and the
Wiener representation. Also, such analysis enables one to
objectively use any available NARX polynomial model or
even the clusters present in the model to make a
dynamically-based choice between Hammerstein and
Wiener representations. It has been shown that in cases for
which the eigenvalues of the process vary with the operating
point, the Wiener representation should be preferred.
On the other hand, Hammerstein models usually
outperform Wiener models in fixed-dynamic processes.
This interpretation of the dynamical differences between
such models seems to be a helpful piece of information in
practice. This result and the whole procedure has been
confirmed and illustrated by means of three numerical
examples.
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7 Appendix

The procedure used in the examples is a byproduct of this
paper and follows from (4) and (6). In words, a general
NARX polynomial of the form (4) is estimated from
dynamical data and subsequently the static function is
retrieved from conventional steady-state analysis of the
estimated model (6).
A few practical remarks are in order.
1. A closed-form expression can be derived to directly
compute the static function from the cluster coefficients of a
NARX polynomial [19]:

f ð�Þ ¼ �yy

�uu

¼ S0=�uuþ Su þ
P‘

m¼2 Sum �uu
m�1

1� Sy �
P‘�1

m¼1

P‘�m
p¼1 Sypum �yy

p�1 �uum �
P‘

p¼2 Syp �yy
p�1

ð31Þ
2. In the present step the only concern is with the steady-sate
performance. Consequently the structure of the model used
is not critical. Nonetheless, (31) shows that not every
possible cluster should be included in this model. For
instance, clusters Oypum ; p>1; 8m should not be included to
avoid output multiplicity and clusters of the type Oyum ; 8m
should be left out if a polynomial form for f ð�Þ is desired.
With this in mind, two or three terms of each valid cluster
are initially included in this auxiliary model. Cluster
analysis can be performed to see whether a certain cluster
can be discarded or not. This procedure has proved
successful in estimating fixed-points from dynamical data
[23]. This model is auxiliary in the sense that it will be only
used to obtain an estimate of the static non-linearity f̂f ð�Þ:
3. Because of the way it is estimated, the static function is
quite robust to noise. In order to illustrate that, consider
Fig. 11 where it can be seen that the estimated static
function does not deviate greatly even for relatively low
values of the signal-to-noise ratio.
4. Since the static function is only required to map the
measured signals u(k) and y(k) to the intermediate variable
v(k), it is not necessary that f ð�Þ be estimated as a
polynomial. In fact, other mathematical structures such as
neural networks could be used to estimate f ð�Þ [24] or even
fuzzy models [7] with the additional advantage of being able
to cope with stronger non-polynomial non-linearities.
Moreover, if basis-functions that are more adequate to
represent the steady state of a certain process are known [25]
such functions can be used. Strictly speaking, this would

render the procedure mildly grey-box because it would
use some prior knowledge. However, the key point in the
suggested procedure is that such an estimate can be
achieved from dynamical data, so long as the range of
u(k) is sufficiently wide to reveal the non-linearity of the
process. If this is not the case, the steady-state behaviour of
the process should be estimated by conventional means.

The procedure followed consists of two steps. First, the
static non-linearity is estimated from the dynamical data.
In this paper, this has been accomplished by means of an
auxiliary model with polynomial structure for which the
static function can be obtained analytically from the
auxiliary model. However, such a model can be of any
other type, as for instance a network, but in such cases the
static function might only be accessible via simulation and
not analytically. Of course, if a NARX polynomial model
is already available then the static non-linearity can be
directly extracted from such a model. On the other hand,
the use of the auxiliary model does not require sophisti-
cated structure selection techniques usually required for
building parsimonious NARX polynomial models [26, 27].
The second step is a standard linear identification exercise
that uses a sequence of measured data either input
(for Wiener models) or output (for Hammerstein models)
and a sequence of synthetic data obtained using the static
non-linear function estimated in the first step.

This procedure is therefore parametric, does not require
prior knowledge, input and output signals are assumed to be
sampled at the same rate (a common situation in the process
industry) and the static non-linearity is not restricted to
a polynomial type (actually, polynomial and rational
functions are possible).

Fig. 11 Normalised RMSE of the estimated static function.
Normalisation was performed with respect to the noise-free value
RMSE ¼ 0:0236: The signal-to-noise ratio was computed as 20
times the logarithm of the ratio of signal variance over noise
variance
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