
FAULT TOLERANT CONTROL FOR NONL INEAR
SYSTEMS

New LPV and TS Fuzzy Virtual Actuator and Sensor Approaches

MARIELLA MAIA QUADROS

Graduate Program in Electrical Engineering
School of Engineering

advisor: Prof. Dr. Reinaldo Martínez Palhares
co-advisor: Prof. Dr. Valter Júnior de Souza Leite

November 3, 2021



FAULT TOLERANT CONTROL FOR NONL INEAR
SYSTEMS

New LPV and TS Fuzzy Virtual Actuator and Sensor Approaches

MARIELLA MAIA QUADROS

Thesis presented to the Graduate Program in Electri-
cal Engineering (PPGEE) of the Universidade Federal
de Minas Gerais (UFMG) in partial fulfillment of the
requirements to obtain the degree of Doctor in Elec-
trical Engineering.

advisor: Prof. Dr. Reinaldo Martínez Palhares
co-advisor: Prof. Dr. Valter Júnior de Souza Leite

Belo Horizonte
November 3, 2021



The future belongs to those who believe in the beauty of their dreams.
— Eleanor Roosevelt



ACKNOWLEDGMENTS

I thank,

First God, who allowed all this to happen throughout my life and who at all
times is the greatest teacher anyone can know.

My family for their ability to believe and invest in me. Mother, your care and
dedication were what, at times, gave me the hope to continue. Dad, your pres-
ence meant security and certainty that I am not alone on this journey. César,
for his support, patience and fun times.

My advisors, Reinaldo and Valter, for their guidance, dedication, wisdom and
patience during this journey. I express my greatest thanks and respect for all
that has been offered to me.

My boyfriend Víctor, for always being by my side, for all his support, companion-
ship, understanding and patience. And for always helping me with his teachings
and knowledge.

My colleagues from D!FCOM for the companionship, knowledge sharing and con-
tribution to my PhD.

The Federal Institute of Education, Science and Technology of Minas Gerais
Campus Sabará and my colleagues of the Area of Control and Industrial Processes
for the time granted to me for the completion of my doctorate.

iv



ABSTRACT

In order to design a control system for industrial processes, it is desired that
it satisfies the performance specifications, is reliable, safe, and has guaranteed
stability. However, the occurrence of faults negatively affects the availability of
these systems, implying, in most cases, in material and functional losses, per-
formance deterioration, instability, and safety risks. Therefore, it is crucial to
implement Fault Tolerant Control (FTC) systems such that, even in the pres-
ence of faults, it is possible to guarantee the stability of the closed-loop system
and ensure acceptable performance. One of the main methods for FTC design
uses the control reconfiguration when faults are detected in process sensors or
actuators. Then, a reconfiguration block is inserted between the controller and
the faulty system, composed of virtual sensors and actuators, to receive the con-
trol and sensor signals and to correct them so that the current controller can
be used without the need of redesign. The Linear Parameter Varying (LPV)
and Takagi-Sugeno (TS) fuzzy reconfiguration blocks are especially interesting,
as they allow to represent classes of nonlinear systems with sector nonlinearities,
incorporating them in the scheduling parameters (for LPV) or the premise vari-
ables (for TS) and to use robust control design strategies. In this Thesis, new
sufficient conditions formulated in terms of Linear Matrix Inequalities (LMIs)
are presented for the synthesis of robust virtual sensors and actuators for non-
linear systems described by LPV and TS fuzzy models. For the TS fuzzy case,
the conditions also allow dealing with systems that have an unknown input and
whose premise variables may not be measured, due to plant configuration or
sensor faults. In order to illustrate the efficiency of the proposed methods, real-
time experiments and computer simulations are carried out for level-control in a
nonlinear Multiple-Input and Multiple-Output (MIMO) system of coupled tanks.

Keywords: Control Reconfiguration; LPV Systems; TS Fuzzy Systems; Virtual
Sensor; Virtual Actuator.
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Part I

INTRODUCTION TO FAULT TOLERANT
CONTROL



1
INTRODUCTION

The increasing complexity and automation of industrial devices and processes
demand more and more reliability. However, the occurrence of faults jeopardizes
the availability of these systems implying, in most cases, in material losses and
risks to safety. In this context, the implementation of Fault Tolerant Control
(FTC) systems is crucial to ensure the maintenance of certain system properties
such as stability and performance. FTC techniques can be: passive [1–3], which
deal with faults as unknown perturbations to be rejected and should be consid-
ered in the design of the controller using, for instance, robust control techniques;
or active [4–8], which modify the control loop after the fault detection and di-
agnosis and, therefore, require information from a Fault Diagnosis and Isolation
(FDI) system [9–11] beforehand. The passive approach tends to be more conser-
vative, since in the design stage, predefined fault conditions that may affect the
system are considered as well as its nominal conditions. Then, a unique closed-
loop solution is provided, regardless of the occurrence of faults or the nominal
behavior of the system, often resulting in poor performance. Thus, this class of
approaches does not make any changes to the system when it is affected by faults
and does not require real-time fault detection and isolation. On the other hand,
active FTC strategies make adaptations to the closed-loop system in real-time,
so that it remains stable and within certain performance conditions when faults
occur. Therefore, an FDI module is extremely necessary, as these adaptations
depend directly on the identification of where the failures occurred, the during
period, and their intensity. The active FTC may be performed by means of fault
accommodation or control reconfiguration. The first modifies the controller to
mitigate the fault effects disregarding control loop changes. It uses the same
sensors and actuators before of the fault occurrence. The latter modifies both
the control loop and the controller that is generally redesigned to use only the
healthy part of the system.
Among the control reconfiguration techniques, one that has gained prominence

is the so-called fault hiding approach [12–16], that consists of adding a system,
named as reconfiguration block, between the faulty plant and the controller,
as shown in Figure 1. The main role of a reconfiguration block is to receive

2



introduction 3

the sensor and control signals (yf and uc, respectively) and to correct them so
that the same controller can be used without needing a redesign. For this, the
controller receives a modified output yc, and the faulty system ΣPf has as input
the control signal uf generated by the reconfiguration block. It is important
to notice that this approach allows closed-loop systems to remain stable and
with satisfactory performance even in the presence of faults, without the need
of modifying the structure or design of the implemented controller, being seen
as a plug-in structure. In industrial processes this characteristic has great value
since the control loops are often relatively complex and keep the controllers that
already present satisfactory performance for the free fault system are welcome.
In the literature, different applications of reconfiguration blocks are found in the
case of linear systems [12], Hammerstein-Wiener models [14, 17], piecewise affine
systems [18], Lur’e systems [19], Takagi-Sugeno (TS) fuzzy models [15, 20], and
Linear Parameter Varying (LPV) systems [21, 22].

Plant SensorsActuators

�aulty System (���
)

Controller

yf�f

Recon�guration
Block

y�

��

Figure 1: Block diagram for the reconfigured faulty system.

The reconfiguration blocks used for fault hiding can be virtual actuators, used
in case of actuator faults, or virtual sensors, in case of sensor faults. It is shown
that both virtual actuator and virtual sensor can be used in the case of simul-
taneous actuator and sensor faults. Furthermore, their designs are independent
of each other and of the controller design due to the separation principle [12,
14]. The LPV and TS fuzzy reconfiguration blocks are especially interesting be-
cause they allow handling nonlinear systems with sector bounded nonlinearities,
by embedding them into the scheduling parameters (LPV) or premise variables
(TS) and using convex optimization techniques.

In particular, the LPV virtual sensors and actuators have often been used, dur-
ing the last years, for fault hiding of LPV systems [21–27] and even for repelling
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cyber-attacks [28]. In [21], the concept of LPV virtual sensors and actuators
for FTC of LPV systems is proposed, such that the same scheduling parameters
are used for both controller, plant and reconfiguration blocks. In such an ap-
proach, novel virtual actuator and sensor are designed for each fault condition
that occurs. That is, for each new fault that is diagnosed by the FDI module,
the reconfiguration block must be redesigned. In addition, the methodology pre-
sented in [21] does not allow the input and output matrices of the LPV model to
be parameter-dependent. On the other hand, [23] allows the input and output
matrices of the LPV model to be parameter-dependent, but uses different virtual
actuator and sensor designs depending on whether the faults are total or partial.
Another methodology is the use of a bank of reconfiguration blocks [27] that is
established considering every fault scenario. The same strategy is used in [25,
26] applied to a wind turbine benchmark. Similarly, in [24], LPV virtual actua-
tors are designed in a model reference framework integrated to a set-membership
fault and in [22], a switching LPV virtual actuator is proposed for FTC of an
omnidirectional mobile robot. In [29], a virtual sensor based on unknown input
observer is proposed for systems described as LPV, subject to multiplicative and
additive faults, but its design is developed only for sensor faults.
Regarding the use of reconfiguration blocks of the TS fuzzy type, the works [15],

[20] and [30] can be highlighted. The work in [20] proposes the use of a virtual
actuator for an application in a proton exchange membrane fuel cell subject to
actuator faults. It uses different virtual actuator designs for partial and total (or
stuck) faults. In [30], a virtual actuator design is proposed for continuous-time
systems, but which is capable of handling only faults in a single actuator of the
process. Moreover, [15] presents a continuous-time static reconfiguration block
for sensor and actuator faults that must be designed for each new fault occurrence.
A common aspect of the methodologies presented in [15], [20], and [30] is that
the design of the reconfiguration block is carried out for specific faults and not
for a set of faults, and [20] and [30] address only the case of actuator faults. That
is, depending on the type or magnitude of the fault, different designs are carried
out. Furthermore, [15, 20] do not address the inclusion of disturbances in the
TS fuzzy model or in the design of the reconfiguration block, while in [30] the
design is performed so that the disturbance is attenuated with aH∞ performance.
Another similarity is that these approaches consider that the premise variables
of the system are measured in real-time.
It is important to emphasize that the consideration that the premise variables

are measured during the entire execution time of the control algorithm may not



introduction 5

be applicable in many industrial processes. This is because, generally, measure-
ments of these variables can depend directly on the values measured by the
system’s sensors (namely, the premise variables usually depend on the state vari-
ables). Then, if the sensors are subject to faults, the calculation of the premise
variables is also affected, compromising the computation of the gains and states
of the reconfiguration block and the controller (when applicable). Therefore, the
behavior of the system can become unpredictable, especially in cases of more
serious faults, such as, for example, with total loss of any essential measures for
determining a premise variable. Currently, the FTC literature for TS fuzzy con-
trol reconfiguration does not address such an issue. Regarding the proposal of
observers for systems without faults and with unmeasured premise variables, [31–
35] present methodologies for state estimation and [33, 36, 37] propose unknown
input observers for TS fuzzy systems (also for systems without faults). In the
LPV context for reconfiguration block designs, in [21, 23, 38] it is also assumed
that the time-varying parameters are available regardless of faults occurrence.
In this Thesis, novel sufficient conditions formulated in terms of Linear Matrix

Inequalities (LMIs) are presented, providing an improved fault hiding approach
by synthesizing robust LPV and TS fuzzy virtual actuators and sensors for deal-
ing with faults in nonlinear systems described by LPV and TS fuzzy models.
In particular, the proposed conditions for LPV systems allow to guarantee

the input-to-output stability of the closed-loop system by means of LPV recon-
figuration blocks. Differently from the previous works on LPV reconfiguration
blocks [21–27], this Thesis includes the various sensor and actuator fault sce-
narios in a polytopic representation of the faulty system. That is, the faults
become time-varying parameters in the LPV model. Thus, such an approach
allows to design a single LPV reconfiguration block that is able to ensure the sta-
bility for different fault scenarios even when multiple sensor and actuator faults
occur simultaneously. As a consequence, it is not necessary to design different
LPV reconfiguration blocks for each fault that occurs, regardless of its magni-
tude, or whether it is partial or total, differently from those proposed by [21, 23].
Moreover, the presented methodology makes it possible to design virtual sensors
and actuators for nonlinear systems described by LPV models with parameter-
dependent input and output matrices.
In the TS fuzzy context, this Thesis proposes novel sufficient conditions in

terms of LMIs for the synthesis of a robust reconfiguration block based on Un-
known Input Observer (UIO) considering unmeasured premise variables. These
conditions guarantee H∞ performance of the combination of the virtual sensor
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with the virtual actuator for nonlinear systems described by TS fuzzy models
subject to sensor and actuator faults and disturbances. The proposed fault hid-
ing approach can ensure, in a single design, the stability and performance of
the closed-loop system for different types and magnitudes of sensor and actua-
tor faults, which can be additive or multiplicative (total or partial), and not for
specific faults, as presented in [15, 20, 30]. Moreover, the design of the reconfig-
uration block takes into account that the TS fuzzy model may be dependent on
unmeasured premise variables, including those that become unmeasured due to
sensor faults, a problem that is also not addressed in the current literature [15, 20,
30]. Another contribution of the proposed approach is that the reconfiguration
block structure is based on an unknown input observer, which allows the virtual
sensor estimation error to be independent of the disturbance. Thus, it becomes
possible for the faulty system to maintain performance close to the nominal one,
even during the period of disturbance, unlike the methodologies in the literature
[15, 20, 30].

1.1 objectives

This Thesis has as main objective to develop new approaches for the design
of reconfiguration blocks for discrete-time nonlinear systems. These blocks are
composed of virtual sensors and actuators in order to enable the robustness of
the system against sensor and actuator faults. To achieve this main objective,
the system and the reconfiguration block can be described by discrete-time LPV
or TS fuzzy models. Therefore, the objectives can be summarized as follows.

1. To propose novel sufficient LMI conditions for the design of virtual sen-
sors and actuators for nonlinear systems described by LPV models with
parameter-dependent input and output matrices. Thus, the results are
more general than those proposed in [21] and [23].

2. To include sensor and actuator faults in a polytopic representation of the
faulty LPV model.

3. To introduce a novel robust reconfiguration block composed of a virtual
sensor and a virtual actuator. The design of this block is carried out for a
predefined set of faults and not for a specific fault, as performed in [21]. In
addition, it contemplates total and partial faults simultaneously, unlike [23].
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4. To propose the synthesis of a new TS fuzzy reconfiguration block based on
UIO with guaranteed H∞ performance that is robust to different actuator
and sensor faults, unlike [15, 20, 30], which present designs for specific
faults. Then, with the use of a single design it is possible to deal with
additive and multiplicative (partial or total) faults in both sensors and/or
actuators, with distinct magnitudes.

5. To present the design of a robust TS fuzzy reconfiguration block with un-
measured premise variables, including those that may have their measure-
ments affected by sensor faults, differently from [15, 20, 30].

6. To design a reconfiguration block based on UIO capable of maintaining
the system performance close to the nominal one, even in the presence of
disturbances, unlike [15, 20, 30].

7. To validate and analyze the proposed methodologies for real-time experi-
ments and computer simulations for a Multiple-Input and Multiple-Output
(MIMO) nonlinear level-control system. For this, the proposed approaches
are compared with other approaches in the literature, considering different
scenarios of sensor and/or actuator faults.

1.2 notations

Throughout this Thesis, ? represents the symmetric block of a symmetric matrix
and diag{·} a diagonal block matrix. I and 0 are the identity and the null
matrices of appropriate dimensions, respectively, and W > 0 (W ≥ 0) denotes
that W is positive definite (semi-definite). Furthermore, Rm×n denotes the set
of matrices with real entries and dimensions m× n. Matrix J(ρk) =

∑D
i=1 ρiJi

is a convex combination of D matrices, with Ji denoting the vertices, where
ρk = [ρ1,k . . . ρD,k]

T is the vector of time-varying parameters that belongs to
the unitary simplex ΘD(ρ) =

{
ρk ∈ RD :

∑D
i=1 ρi,k = 1, ρi,k ≥ 0

}
, ∀i = 1, . . . ,D.

ΩD(J) = {J1,J2, . . . ,JD} denotes the polytope of D vertices of matrices Ji. A†

represents the pseudoinverse of matrix A calculated as A† = (ATA)−1AT .

1.3 structure of the document

This Thesis is organized into five chapters. In Chapter 2, the main theoreti-
cal concepts for the development and understanding of this work are addressed.
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Chapter 3 presents the main results of a new approach for the design of a virtual
sensor and actuator for nonlinear systems described by LPV models. In addi-
tion, experimental results are presented for a nonlinear system of coupled tanks
modeled as an LPV one. Chapter 4 presents a development for the proposed
TS fuzzy reconfiguration block based on UIO and with unmeasured premise vari-
ables. Simulations are also carried out for the nonlinear system of coupled tanks,
for different fault scenarios and disturbance. Finally, Chapter 5 presents final
discussions about this Thesis.



2
PREL IMINARIES

This chapter presents some theoretical foundations and mathematical tools used
to develop the main results of the work. Nonlinear systems described by Linear
Parameter Varying (LPV) and Takagi-Sugeno (TS) fuzzy models are introduced
as well as some stability concepts such as input-to-state stability (ISS), input-to-
output stability (IOS) and H∞ performance. In addition, basic principles of the
fault hiding approach found in the literature as well as the performance indices
used for the analysis of the simulated and implemented reconfiguration blocks
are presented.

2.1 linear parameter varying systems

Linear Parameter Varying (LPV) systems are linear dynamical systems described
by differential equations (or difference equations) that depend on time-varying
parameters [39, 40]. These parameters are measured and can be seen as addi-
tional or internal signals of the system that modify its internal structure over
time [41].
One of the first LPV approaches was proposed in [42] in the context of gain-

scheduling analysis and control of nonlinear systems, in which a nonlinear con-
troller is designed from a set of linear controllers [41]. During the execution of the
control algorithm, these controllers are combined with the use of the time-varying
parameters measurement [39]. However, at the time, the theory developed did
not present the adequate tools for the analysis of stability and performance of
such systems. However, with the development of robust control techniques using
convex optimization tools, it became possible to analyze nonlinear systems de-
scribed by LPV models as well as the synthesis of controllers that satisfy certain
performance and stability specifications [41]. Thus, in last years, the modeling
and control of LPV systems have been widely used and studied in several appli-
cations and theoretical developments, such as robotics [43, 44], energy [45–47],
aeronautics [48, 49], among others [50–54].
The polytopic framework is one of the ways to describe and analyze LPV

systems, which are described by a convex combination of linear systems and

9
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which enables the direct use of convex optimization techniques [41, 55, 56]. For
this, consider the following discrete-time LPV system [40]:

 xk+1 = A(ρk)xk +B(ρk)uk

yk = C(ρk)xk +D(ρk)uk,
(2.1)

where xk ∈ Rn is the state vector, uk ∈ Rm is the sequence of control input
and yk ∈ Rp is the output. The matrices A(ρk) ∈ Rn×n, B(ρk) ∈ Rn×m,
C(ρk) ∈ Rp×n, and D(ρk) ∈ Rp×m relate the dynamics, input and output of the
system and are given by:

A(ρk) =
N∑
i=1

ρi,kAi, B(ρk) =
N∑
i=1

ρi,kBi, C(ρk) =
N∑
i=1

ρi,kCi, D(ρk) =
N∑
i=1

ρi,kDi,

(2.2)
and ρk = [ρ1,k . . . ρN ,k]

T is the vector of time-varying parameters belonging to
the unitary simplex ΘN , given by:

ΘN =

ρk ∈ RN :
N∑
i=1

ρi,k = 1, ρi,k ≥ 0
 , ∀i = 1, . . . ,N . (2.3)

In addition, matrices (2.2) belong to polytopes whose vertices are known, i.e.:

A(ρk) ∈ ΩN (A) = {A1,A2, . . . ,AN},
B(ρk) ∈ ΩN (B) = {B1,B2, . . . ,BN},
C(ρk) ∈ ΩN (C) = {C1,C2, . . . ,CN},
D(ρk) ∈ ΩN (D) = {D1,D2, . . . ,DN},

(2.4)

where ΩN (A), ΩN (B), ΩN (C), and ΩN (D) are, respectively, the polytopes of
N vertices of matrices Ai, Bi, Ci, and Di, with i = 1, . . . ,N .
The scheduling parameters can be classified as exogenous, when these are

independent of the states; or endogenous, when they are described as a function of
system states and resulting from the LPV modeling of nonlinear systems. These
systems are called quasi-LPV systems [40, 41, 57] and have a similar approach
to the nonlinear systems described by TS fuzzy systems.
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2.2 takagi-sugeno fuzzy systems

The Takagi-Sugeno (TS) fuzzy systems approach was proposed by [58, 59], in
which the construction of fuzzy models is able to represent nonlinear systems
globally or semi-globally, from the combination of a set of linear models [60–63].
For this, the model is described by fuzzy rules which represent local linear input-
output relations of a nonlinear system and the local dynamics of each rule is
given by a linear model. So, the TS fuzzy model is given by the combination of
the linear models [64]. A comprehensive review on TS fuzzy models and control
has been recently published in [63].
Similar to quasi-LPV systems, the use of TS fuzzy models for the representa-

tion of nonlinear systems enables the analysis of these systems and the design
of controllers that satisfy different specifications of stability and performance,
through convex optimization tools [60, 65, 66]. Thus, the TS fuzzy modeling
and control has been widely used in different areas of application in recent years,
such as robotics [67–69], level control [70, 71], energy [72, 73], aeronautics [74,
75], networked systems [76], and studied in several theoretical developments, as
in [77–84].
The TS fuzzy model is described from the following rules [63, 64]:

Model Rule` : IF zα1,k is Γ`1 and . . . and zαq,k is Γ`q,

THEN

 xk+1 = A`xk +B`uk

yk = C`xk
, ` = 1,2, . . . ,N ,

(2.5)

where Rule` is the `th fuzzy inference rule, Γ`j , j = 1, . . . ,q, are the fuzzy sets,
N is the number of model rules, xk ∈ Rn is the state vector, uk ∈ Rm is the
control input vector and yk ∈ Rp is the output vector. Matrices A` ∈ Rn×n,
B` ∈ Rn×m, and C` ∈ Rp×n relate the dynamics and the output of the `th local
model and zα1,k , . . . ,zαq,k are known premise variables that may be functions
of the state variables, external disturbances, and/or time. It is assumed that
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the premise variables are not functions of the input variables uk and zα,k =

[zα1,k zα2,k . . . zαq,k ]. Thus, the fuzzy system outputs can be defined by:



xk+1 =

N∑
`=1

ω`(zα,k) {A`xk +B`uk}

N∑
`=1

ω`(zα,k)

=
N∑
`=1

α`(zα,k) {A`xk +B`uk}

, A(αk)xk +B(αk)uk

yk =

N∑
`=1

ω`(zα,k)C`xk

N∑
`=1

ω`(zα,k)

=
N∑
`=1

α`(zα,k)C`xk , C(αk)xk,

(2.6)

where the normalized membership function α`(zα,k) is given by:

α`(zα,k) =
ω`(zα,k)
N∑
`=1

ω`(zα,k)

, (2.7)

with,

ω`(zα,k) =
q∏
j=1

ψ`j(zj,k). (2.8)

where the term ψ`j(zαj,k) is the grade of membership of zj,k in Γ`j and α`(zα,k)

satisfies the convex sum properties, given by:

N∑
`=1

α`(zα,k) = 1, α`(zα,k) ≥ 0, ` = 1, . . . ,N . (2.9)

2.3 input-to-state and input-to-output stability

Throughout this Thesis, the concepts of Input-to-State Stability (ISS) and Input-
to-Output Stability (IOS) are used for stability analysis and synthesis of the
proposed reconfiguration blocks, as presented in the following definitions.

Definition 2.1 Consider a nonlinear system with dynamics given by xk+1 =

f(xk,vk), where xk ∈ Rn is the state and vk ∈ Rd is the disturbance. The
system is called input-to-state stable with respect to the input vk, if for each
initial condition x0 ∈ Rn and a bounded vk, the corresponding trajectories are
bounded and, if vk is null, the trajectories go asymptotically to the origin.
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Definition 2.2 Consider the same nonlinear system as described in Definition
2.1 with the output given by yk = h(xk), yk ∈ Rp. The system is called input-
to-output stable with respect to the disturbance vk, if for each initial condition
x0 ∈ Rn and a bounded vk, the output is bounded, and, if vk is null, the output
converges to zero. In addition, the output is bounded proportionally by to the
initial condition of the output y0 ∈ Rp.

For more details about input-to-state stability and input-to-output stability
see [21, 85–90] and references therein.

2.4 H∞ performance of discrete-time systems

The definition of the H∞ performance is presented below. The idea is to obtain,
along this Thesis, conditions for the synthesis of a TS fuzzy reconfiguration block
with H∞ performance.

Consider the discrete-time TS fuzzy system given by: xk+1 = A(αk)xk +E(αk)wk,
zk = C(αk)xk + F (αk)wk,

(2.10)

where xk ∈ Rn is the state vector, wk ∈ Rd the disturbance, zk ∈ Rp the system
output, andA(αk) ∈ Rn×n, E(αk) ∈ Rn×d, C(αk)Rp×n, andD(αk)R

p×d. Then,
considering zero initial conditions, the H∞ performance of the system (2.10) is
defined as the `2 induced gain [91, 92]:

‖H‖∞ = sup
‖wk‖2 6=0

‖zk‖2
‖wk‖2

< η, (2.11)

with an upper bound given by a positive scalar η. Notice that wk ∈ `d2 and zk ∈ `p2.
Based on the Bounded Real Lemma, and considering zero initial conditions, one
can write in function of a Lyapunov candidate function V (zk) the inequality:

V (zk+1)− V (zk) + zTk zk − η2wTk wk < 0. (2.12)

2.5 fault hiding approach

Among the existing FTC strategies in the literature, one that stands out is the
control reconfiguration with the approach of fault hiding [15, 21, 23, 93] addressed
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in this Thesis. This is due to the fact that it is an efficient methodology that
allows the system to remain stable and with reasonable performance even with
the fault of sensors and actuators of the process, without having to modify the
designed and implemented controller. For this, a reconfiguration block is inserted
between the faulty system and the controller designed for the nominal system.
This block is composed of a virtual sensor and a virtual actuator, which generate
alternative output (yc) and control signals (uf ) responsible for hiding the faults
of the controller, as illustrated in Figure 2, from the system output yf and the
nominal control signal uc. As the main objective of this work is to propose FTC
solutions for nonlinear systems, reconfiguration blocks and systems described by
LPV and TS fuzzy are considered.

ΣPf

Virtual
Sensor

Virtual
Actuator

Controller

yf

yc

uc

uf

x̂f

Reconfiguration

block

Nominal

Figure 2: Block diagram for the reconfigured faulty system.

Thus, the faulty system (ΣPf ) can be represented as shown in Figure 2. For
the reconfiguration to be satisfactory, information about the sensor and actuator
fault indications is necessary, such as where they occurred (in which sensors
and/or actuators), when, and with what intensity. Then, it is necessary to use
an FDI module, which provides such data in real-time, so that the faulty model
is updated, allowing an adequate action of the reconfiguration block. For more
details on fault detection and isolation, see [94–97]. From this, the following
assumption is presented.

Assumption 2.1 The FDI module provides accurate information about sensor
and actuator faults, such as the period of the fault occurrence, its intensity and
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which component of the system is affected, regardless of whether the fault is mul-
tiplicative and/or additive.

Considering the assumption above, it can be said that the reconfiguration
block supplies the controller with a measurement signal yc similar to that which
would be generated by the nominal system, and the control signal uf applied
in the faulty system is also adjusted by the reconfiguration block, in order to
compensate the actuator faults. As the faults are hidden from the controller, it
continues to control the nominal system (in its view) and, therefore, does not need
to be redesigned in case of faults. In addition, as the controller is not affected
by the faults, its design can be carried out taking into account only the model
of the nominal system and may already be implemented before the inclusion of
the reconfiguration block, regardless of its structure. Thus, the virtual sensor
and the actuator can be seen as a plug-in of the system, capable of making the
system satisfy conditions of stability and performance, even in the presence of
faults.

Remark 2.1 According to the fault hiding paradigm [12–14, 98], it is possible
to insert a reconfiguration block into the system so that faults do not affect the
response of the designed controller. Therefore, in this Thesis, as in [21], it is
assumed that there is a controller designed for the nominal system, called nominal
controller, which has as input the reference sequence rk and as output the control
sequence uc,k, with appropriate dimensions. Moreover, the obtained closed-loop
system is input-to-output stable with respect to the inputs (rk,dk) and the outputs
(uc,k,xk) before the insertion of the reconfiguration block, where xk is the state
vector of the nominal system.

2.6 coupled tanks systems

The increasing complexity and automation of industrial devices and processes de-
mand more and more reliability. In this context, the design and implementation
of control (or FTC) systems are crucial to guarantee the stability, robustness
and performance of the system as a whole. Among the most important indus-
trial processes, is the level and flow control in tanks or reservoirs [99], since it
is used in several application areas, such as nuclear power generation [100], min-
ing [101], chemical [102], petrochemical [103], pharmaceutical processing [104],
boilers [105], among others. Thus, different methodologies are proposed for the



2.6 coupled tanks systems 16

(a) Coupled tank system. (b) Process control system.

Figure 3: Level-control system.

modeling and design of control systems for this type of process, such as, for ex-
ample, sliding mode [106], backstepping [107], predictive [108], hybrid [109], LPV
[23] and TS fuzzy [70] approaches.
In addition, as the main objective of this Thesis is the development of recon-

figuration block designs for nonlinear systems subject to faults, the set-up of a
nonlinear coupled tank system, as depicted in Figure 3a, is used to illustrate the
effectiveness of the methodologies proposed both for LVP and TS fuzzy models.
The coupled tank system is present at the Signals and Systems Laboratory of
CEFET-MG Campus Divinópolis and is inspired in the proposal in [110] and
consists of four tanks (T1, T2, T3, T4) with a capacity of 200 liters each one
and two reservoirs with a capacity of 400 liters each one, located at the bottom
of the plant.
Only tanks T3 and T4 (bottom tanks of Figure 3a) are used in the experi-

ments, and they are shown in the representative diagram in Figure 4 (with the
respective dimensions). Moreover, a nonlinear solid [111], depicted in Figure 5b,
constructed from expanded polystyrene is introduced into tank T3. The solid has
a circular section of diameter varying between 23.3 cm and 59.8 cm. The inser-
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tion of this nonlinearity allows the system to be described as an LPV or TS fuzzy
model, enabling the design and implementation of LPV and TS fuzzy reconfig-
uration blocks. The algorithms used for the system control run on a Raspberry
Pi 3 Model B through a notebook using an open-source Python-based interface
[112] that communicates with a Programmable Logic Computer (PLC), as de-
picted in Figure 3b. The PLC is responsible for sending the control signal that
commands the speed of two 1 hp hydraulic induction pumps, model CAM-W6
from Dancor, presented in Figure 5a. The coupled tanks system is configured so
that the two pumps have their flow directed to the tank T3. Pump speeds are
controlled using two frequency inverters model CFW09 manufactured by WEG,
as shown in Figure 3b. Also, the level measures are stored in the PLC memory,
which is accessed by the notebook’s interface. The levels of the two tanks are
measured using two differential pressure sensors of the model 26PCBFA6D from
manufacturer Honeywell. In addition, to avoid overflowing, the process has a se-
curity system that shuts down the entire system (PLC, frequency inverters and
other devices) when the level of any of the tanks exceeds the level of 70 cm.

Input 1 Input 2

cT

8
�
c
m

�3�3 cm

��

�2

62 cm 62 cm

V� V2

T� T4

Nonlinear volume

Figure 4: Two tank system diagram.

During the experiments, valve V1 is kept closed, and valve V2 is kept with a
fixed opening, as depicted in Figure 4 (notice also from Figure 4 how the solid
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(a) Two pump system. (b) Nonlinear solid.

Figure 5: Actuators and nonlinear solid inserted in tank T3.

depicted in Figure 5b is introduced in tank T3). Thus, using mass balance, the
following dynamic equations of the system described above are obtained:

ḣ1(t) =
−h1(t) + h2(t)

S1(h1(t))R12(h1(t),h2(t))
+
qi1(u1(t))

S1(h1(t))
+
qi2(u2(t))

S1(h1(t))

ḣ2(t) =
h1(t)− h2(t)

R12(h1(t),h2(t))S2
− qo(h2(t))

S2

(2.13)

where h1(t) and h2(t) are the levels of tanks T3 and T4, respectively, qi1(u1(t))

and qi2(u2(t)) are the input flows, with u1 and u2 being the control signals,
qo(h2(t)) is the outflow of the second tank, and R12(h1(t),h2(t)) is the flow
resistance between the two tanks and adjusted by means of valve V2. The func-
tions of qi1(u1(t)), qi2(u2(t)), qo(h2(t)) and R12(h1(t),h2(t)) are identified by
experimental essays with application of least squares. Moreover, S2 is the area
of the circular section of tank T4, being defined as S2 = 3019 cm2 for the LPV
approach experiments of Chapter 3 and as S2 = 0.3019 m2 for the computer
simulations of the TS fuzzy approach of Chapter 4. S1(h1(t)) is the nonlinear
area of the circular section of tank T3, calculated as:

S1(h1(t)) =
3r
5

(
2.7r− cos(2.5π((h1(t)− ω1)× 10−2 − µ))

σ
√

2π

×e
−((h1(t)− ω1)× 10−2 − µ)2

2σ2

× ω2,
(2.14)
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where r = 0.31 m is the radius of the tank, σ = 0.55 and µ = 0.40. For the
LPV case, ω1 = 8 cm, ω2 = 104, the area S1 is given in cm2, the levels are in
the range 0 ≤ (h1(t),h2(t)) ≤ 80 cm and the control signals are in the range
0 ≤ (u1(t),u2(t)) ≤ 100%. For the TS fuzzy case, ω1 = 0.08 m, ω2 = 1, the area
S1 is given in m2, the levels are in the range 0 ≤ (h1(t),h2(t)) ≤ 0.80 m and the
control signals are in the range 0 ≤ (u1(t),u2(t)) ≤ 1.
Experimental results of the implementation of LPV reconfiguration blocks pro-

posed in this work and by other methodologies are presented in Section 3.4, con-
sidering faults of sensors and actuators. In Section 4.4, the nonlinear model of
the coupled tanks system is used for computer simulations of the implementation
of the TS fuzzy reconfiguration block proposed in Chapter 4 and it is also com-
pared to the approach presented in Chapter 3 and without any FTC strategy,
for different fault scenarios and with disturbance.

2.6.1 Controller Design

For controlling the process, it is established that tank T3 level must track a
piecewise constant reference (rk). For that, an integrator is inserted in the
closed-loop system such that the error ec,k = rk − h1,k is null in steady state.
Therefore, the system matrices must be augmented to include the dynamics of
ec and are given by:

Aai =

 Ai 0
−TsCh1 1

 ; Bai =

Bi
0

 ; ∀i = 1, . . . ,Ñ , (2.15)

where Ai and Bi, are the vertices of the dynamics and input matrices of the
system, respectively, with i = 1, . . . ,Ñ , Ch1 = [1 0], and Ts is the sampling
time. Thus, a gain-scheduled/TS fuzzy controller is designed, with the following
resulting control signal:

uc,k = K(αk)xa,k, (2.16)

where K(αk) ∈ Rm×(n+1), with K(αk) =
∑Ñ
i=1 αi,kKi, and xa,k ∈ Rn+1 is the

state vector augmented, with xa,k = [h1,k h2,k
∑
Tsec,k]

T . To determine the
gain matrices Ki for i = 1, . . . ,Ñ , the methodology proposed in [113, Theorem
2] is used, with matrices Ai and Bi in [113, Eq. (8)] replaced by the augmented
matrices Aai and Bai given in (2.15).
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2.7 performance indices

The control theory assumes that the designer can quantitatively specify the re-
quired performance for a closed-loop system. Thus, a certain performance index
can be calculated and used to measure that performance and it is chosen for the
closed-loop system evaluation so that the most relevant control specifications are
emphasized.
Generally, a performance index to be useful must always be a positive or a

null number. The better configuration for the system is defined as the one that
minimizes a given index. Thus, to compare different closed-loop systems, it is
necessary to calculate indices that ensure quantitatively which one of them has
the best performance.
Very classic indices ([114]) are the ones related to the integral of the error

and are usually used to compute the performance of the closed-loop systems as:
integral of the absolute error (IAE), integral of the square error (ISE), integral
of the time multiplied by the absolute value of the error (ITAE) and integral of
the time multiplied by the square of the error (ITSE). In this work, the indices
IAE and ISE are used. Furthermore, the standard deviation of the control signal
(IVU), which takes into account the variability of the analyzed variable and allows
an evaluation of the performance through the control signal, is used as well.
The indices IAE and ISE are given by:

IAE =
1
NA

NA∑
k=1
|ek|, (2.17)

and

ISE =
1
NA

NA∑
k=1

e2
k, (2.18)

where ek = rk − yk is the tracking error of the system output in relation to the
reference signal and NA is the total number of samples of the evaluated time
period.
The variability of the manipulated variable uk around the mean value ū is

estimated by the standard deviation:

IVU =

√√√√√ 1
NA

NA∑
k=1
|uk − u|2, (2.19)

where NA is the total number of samples used to calculate the variability.
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2.8 useful lemmas

For a better understanding of the methodology proposed in Chapter 4, the fol-
lowing lemmas are presented.

Lemma 2.1 [32] For y ∈ Rn and σ > 0, the following inequalities are equivalent:

yT y− σ < 0⇔ yyT − σI < 0. (2.20)

Lemma 2.2 [32] The following inequality holds:

XTY + Y TX ≤ µXTX + µ−1Y TY , (2.21)

where X and Y are matrices of appropriate dimensions and µ is a positive scalar.

Lemma 2.3 Differential Mean Value Theorem [32]: Consider f(z) : Rn → R.
If f(z) is a differentiable function on [a,b], with a, b ∈ Rn, there exits a vector
c ∈ Rn with ci ∈]ai,bi[, with ]ai,bi[ an open interval between ai and bi and
i = 1, . . . ,n, so that:

f(b)− f(a) = ∇f(c)(b− a) (2.22)

with ∇f(c) = ∂f(c)
∂z .



Part II

FAULT TOLERANT CONTROL FOR NONL INEAR
SYSTEMS



3
A L INEAR PARAMETER VARYING VIRTUAL ACTUATOR
AND SENSOR APPROACH

In this chapter, novel sufficient conditions based on LMIs are proposed for the syn-
thesis of virtual sensor and actuator for nonlinear systems described by discrete-
time LPV models, ensuring the ISS of the reconfiguration block. This new
methodology allows the system to be robust to different types of sensor and
actuator faults with the use of a single reconfiguration block design, unlike the
proposals in [21, 23]. In addition, experimental results are presented for different
approaches and scenarios of faults implemented in the nonlinear system of cou-
pled tanks presented in Section 2.6. The approach proposed in this chapter has
been published in [38].

3.1 faulty linear parameter varying system

Consider the discrete-time LPV system, adapted from [21], described by:

ΣP =

 xk+1 = A(αk)xk +B(αk)uk +Bddk,
yk = C(αk)xk,

(3.1)

where xk ∈ Rn represents the state vector, uk ∈ Rm is the sequence of control
input, yk ∈ Rp is the output, and dk ∈ Rd denotes a disturbance sequence.
The matrices A(αk) ∈ Rn×n, B(αk) ∈ Rn×m, and C(αk) ∈ Rp×n relate the
dynamics and the output of the system and belong to polytopes whose vertices
are known as follows A(αk) ∈ ΩN (A), B(αk) ∈ ΩN (B), and C(αk) ∈ ΩN (C).
The disturbance matrix Bd ∈ Rn×d is precisely known.

In this chapter the faulty model, denoted by ΣPf , is considered to be the same
as the plant nominally represented by ΣP in (3.1), but with the fault indications
in the input and output matrices (which has been adapted from [23]). Then, the
faulty model is:

ΣPf =

 xf ,k+1 = A(αk)xf ,k +Bf (αk,φk)uf ,k +Bddk,
yf ,k = Cf (αk,γk)xf ,k,

(3.2)

23
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Specifically in (3.2) the faults are represented by means of multiplicative no-
tation such that φk ∈ Rm and γk ∈ Rp are, respectively, the vectors of actuator
and sensor fault indications verifying γj,k,φi,k ∈ [0,1] ∀i,j. Defining the diagonal
matrices φ̂ = diag(φk) and γ̂ = diag(γk) (as in [23]), the input control and
output matrices of the faulty system are given by, respectively:

Bf (αk,φk) = B(αk)φ̂, (3.3)

and
Cf (αk,γk) = γ̂C(αk). (3.4)

As a consequence, matrices φ̂ and γ̂ belong to polytopic domains, that is, φ̂ ∈
Ω2m(φ̂k) and γ̂ ∈ Ω2p(γ̂k), encompassing all possible actuator and sensor fault
scenarios. Therefore, the faulty system matrices are enclosed into the new poly-
tope ΩN

([
A,Bf ,CTf

])
, given by:

ΩN = ΩN

([
A,Bf ,CTf

])
×Ω2m(φ̂k)×Ω2p(γ̂k), (3.5)

with N = N2m2p. Additionally, it is convenient to represent the faulty sys-
tem ΣPf using a single vector of time-varying parameters which incorporates the
time-varying parameters αk, φk and γk. Such parameter vector is denominated
θk ∈ ΘN (θ). In this sense, ΣPf in (3.2) with matrices belonging to the polytope
described in (3.5) can be also represented by:

ΣPf =

 xf ,k+1 = A(θk)xf ,k +Bf (θk)uf ,k +Bddk,
yf ,k = Cf (θk)xf ,k.

(3.6)

The following example illustrates how a faulty system is described using the
notation presented in this chapter.

Example 3.1. Consider the nominal LPV system in (3.1) with the matrices:

A(αk) =

0.8 1
0 α1,k

 , B =

1
0

 , Bd =

0
1

 , C =
[
0 1

]
, (3.7)

where α1,k ≤ α1,k ≤ α1,k, with α1,k = 0.6 and α1,k = 0.9 and, consequently,
N = 2 vertices.
Assuming the system is subject to sensor and actuator faults in the ranges

φ1,k ≤ φ1,k ≤ φ1,k and γ1,k ≤ γ1,k ≤ γ1,k, with φ1,k = 0.1, φ1,k = 1, γ1,k = 0.1,
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and γ1,k = 1, the input and output matrices of the faulty system (3.2) are given
by:

Bf (φk) = Bφ1,k,
Cf (γk) = γ1,kC,

(3.8)

as shown in (3.3) and (3.4). Therefore, according to (3.5), the number of vertices
of the faulty system becomes N = 8, being described by (3.6), with the following
matrices:

A1 = A2 = A3 = A4 =

0.8 1
0 α1,k

 , A5 = A6 = A7 = A8 =

0.8 1
0 α1,k

 ,

Bf1 = Bf2 = Bf5 = Bf6 =

φ1,k

0

 , Bf3 = Bf4 = Bf7 = Bf8 =

φ1,k

0

 ,

Cf1 = Cf3 = Cf5 = Cf7 =
[
0 γ1,k

]
, Cf2 = Cf4 = Cf6 = Cf8 =

[
0 γ1,k

]
.

(3.9)

The following assumption is considered throughout this chapter.

Assumption 3.1 The vector of time-varying parameters θk in (3.6) is measured
independently from the occurrence of faults.

It is important to note that the time-varying parameters related to sensor
and actuator fault indications are provided by the FDI module, as presented in
Assumption 2.1.

3.2 problem formulation

The fault hiding approach proposed in this chapter is composed of a virtual sensor
and a virtual actuator to masking the sensor and actuator faults, as shown in
Figure 2 of Section 2.5. Thus, alternative signals (yc and uf ) are generated by
the reconfiguration block so that it is not necessary to perform any change in the
controller designed for the nominal system (3.1).
As proposed by [21], the virtual sensor is described by the following equation:

x̂f ,k+1 = Aδ(θk)x̂f ,k +Bf (θk)uf ,k −L(θk)yf ,k, (3.10)
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where x̂f ,k ∈ Rn is the estimated state by the virtual sensor of the faulty system,
uf ,k ∈ Rm is the control sequence computed by the virtual actuator defined
latter in this section, Aδ(θk) = A(θk) + L(θk)Cf (θk), and L(θk) ∈ Rn×p is the
virtual sensor matrix gain given by:

L(θk) =
N∑
i=1

θi,kLi. (3.11)

From this, the error between the estimated state (x̂f ,k) and the faulty system
state (xf ,k) can be calculated as ek = x̂f ,k − xf ,k and has as dynamics:

ek+1 = Aδ(θk)ek + vk (3.12)

where vk = −Bddk.
Similarly, as presented in [21], the virtual actuator is defined by:


x̃k+1 = A(θk)x̃k +B(θk)uc,k,
uf ,k = −M(θk)x∆,k −R(θk)uc,k,
yc,k = C(θk)x̃k,

(3.13)

where x̃k ∈ Rn is the reference state generated by the virtual actuator and based
on the nominal system (3.1), uc,k ∈ Rm is the control sequence calculated by the
nominal controller, x∆,k = x̃k− x̂f ,k is the difference state and R(θk) ∈ Rm×m is
a static gain matrix. Moreover, yc,k ∈ Rp is an alternative output generated by
the virtual actuator that becomes the nominal controller input in the presence
of faults. Finally, M(θk) ∈ Rm×n is the virtual actuator gain matrix described
by:

M(θk) =
N∑
i=1

θi,kMi, (3.14)

and the dynamics of the difference state is given as follows:

x∆,k+1 = (A(θk) +Bf (θk)M(θk))x∆,k +wk, (3.15)

where wk = −L(θk)Cf (θk)ek+B∆uc,k, with B∆ = B(θk)+Bf (θk)R(θk). Then,
the gain matrix R(θk) can be designed so that the norm of the second term of
wk is as small as possible.
Thus, the main problem to be addressed in this chapter is stated.
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Problem 3.1 Determine the gains L(θk) andM(θk) for the virtual sensor (3.10)
and the virtual actuator (3.13) for the faulty LPV system (3.6) so that the recon-
figured system composed by the virtual sensor (3.10), the virtual actuator (3.13),
the faulty plant (3.6) and the nominal controller is input-to-output stable with
respect to the input (rk,dk), and, in addition, it is robust to a given set of sensor
and actuator faults.

3.3 lpv virtual sensor and actuator

In the following, the main contributions in this chapter concerning the design of
robust virtual sensors and actuators are presented.

3.3.1 Virtual Sensor

Theorem 3.1 Consider the faulty LPV system in (3.6). If there exist symmetric
definite positive matrices Pi ∈ Rn×n, matrices Gi ∈ Rn×n, Ui ∈ Rn×p, Yi ∈
Rp×n, Zi ∈ Rp×p, i = 1, . . . , N , and a scalar σd ≥ 1 such that the following
LMIs are feasible:


Pi −Gi −GTi 0 GiAi Gi Ui

? −I I 0 0
? ? −Pj +CTfiYj + Y Tj Cfi 0 −Y Tj +CTfiZj

? ? ? −σdI 0
? ? ? ? −Zj −ZTj


< 0,

(3.16)
∀i,j = 1, . . . , N , then, the estimation error (3.12) is input-to-state stable with
respect to the disturbance dk with ISS gain calculated by ‖Bd‖‖d‖∞σd. Moreover,
the LPV virtual sensor gain in (3.11) is given by:

Li = G−1
i Ui. (3.17)

Proof. Consider:
V (ek) = eTk P (θk−1)ek (3.18)

where P (θk−1) =
∑N
j=1 θj,k−1Pj , as an ISS Lyapunov candidate function.
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Because Pi > 0, the first term of the diagonal in (3.16) implies that Gi is
nonsingular. Now, define Ui = GiLi and use in (3.16) the fact that GiP−1

i GTi ≥
Gi +GTi − Pi, in order to obtain:


−GiP−1
i GTi 0 GiAi Gi GiLi

? −I I 0 0
? ? −Pj +CTfiYj + Y Tj Cfi 0 −Y Tj +CTfiZj

? ? ? −σdI 0
? ? ? ? −Zj −ZTj


< 0. (3.19)

The resulting inequality (3.19) is pre- and post-multiplied by diag
{
G−1
i ,I,I,I,I

}
and its transpose, respectively, resulting in:



−P−1
i 0 Ai I Li

? −I I 0 0
? ? −Pj +CTfiYj + Y Tj Cfi 0 −Y Tj +CTfiZj

? ? ? −σdI 0
? ? ? ? −Zj −ZTj


< 0. (3.20)

The last term of the diagonal in (3.16) implies the nonsingularity of Zi. Then,
in (3.20), define Qi = P−1

i , Hi = Z−Ti , and Fi = QiY
T
i Hi, to obtain:



−Qi 0 Ai I Li

? −I I 0 0
? ? −Q−1

j + Φ1 0 −Q−1
j FjH

−1
j +CTfiH

−T
j

? ? ? −σdI 0
? ? ? ? −H−Tj −H−1

j


< 0, (3.21)

Φ1 = CTfiH
−T
j F Tj Q

−1
j +Q−1

j FjH
−1
j Cfi .
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Thereafter, multiplying (3.21) on the left by:

S1 =



I 0 0 0 0
0 I 0 0 0
0 0 0 0 Hj

0 0 0 I 0
0 0 Qj 0 −Fj


, (3.22)

and on the right by its transpose, respectively, results in:


−Qi 0 LiH
T
j I AiQj −LiF Tj

? −I 0 0 Qj

? ? −Hj −HT
j 0 CfiQj + F Tj

? ? ? −σdI 0
? ? ? ? −Qj


< 0. (3.23)

Subsequently, multiply the inequality (3.23) by θi,k and θj,k−1 and summing
it up for all i,j = 1, . . . , N , one obtains:



−Q(θk) 0 L(θk)H(θk−1)
T I Φ2

? −I 0 0 Q(θk−1)

? ? −H(θk−1)−H(θk−1)
T 0 Φ3

? ? ? −σdI 0
? ? ? ? −Q(θk−1)


< 0, (3.24)

Φ2 = A(θk)Q(θk−1)−L(θk)F (θk−1)
T ,

Φ3 = Cf (θk)Q(θk−1) + F (θk−1)
T .

Then, pre- and post-multiplying the resulting inequality (3.24) by:

S2 =



I 0 L(θk) 0 0
0 I 0 0 0
0 0 0 0 Q(θk−1)

−1

0 0 0 I 0


, (3.25)
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and its transpose, respectively, one obtains:

−P (θk)−1 0 Aδ(θk) I

? −I I 0
? ? −P (θk−1) 0
? ? ? −σdI


< 0. (3.26)

Applying the Schur complement in (3.26), gives:
 Aδ(θk)

TP (θk)Aδ(θk)− P (θk−1) + I

P (θk)Aδ(θk)

Aδ(θk)
TP (θk)

−σdI + P (θk)

 < 0. (3.27)

Then multiplying the inequality (3.27) on the left and right by
[
eTk vTk

]
and

its transpose, respectively, it yields:

(ek+1)
TP (θk)(ek+1)− eTk P (θk−1)ek ≤ −eTk ek + σdv

T
k vk, (3.28)

which can be described as:

V (ek+1)− V (ek) ≤ −||ek||2 + σd||vk||2. (3.29)

Moreover, if (3.26) is satisfied and rearranging the terms, then:
−I I

? −P (θk−1)

 < 0 and

−P (θk)−1 I

? −σdI

 < 0. (3.30)

By Schur complement, P (θk−1) > I and P (θk) < σdI. Then,

‖ek‖2 ≤ V (ek) ≤ σd‖ek‖2. (3.31)

Thus, by (3.29) and (3.31), V (ek) is an ISS Lyapunov function for the estima-
tion error (3.12), and, therefore, the system is input-to-state stable with respect
to vk = −Bddk.
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In order to calculate the ISS gain of the system, a procedure similar to that
of [21, Appendix A.1] is performed. From (3.29), −‖ek‖2 ≤ −(1/σd)V (ek).
Combining this with equation (3.31) gives:

V (ek+1) ≤ V (ek)

(
1− 1

σd

)
+ σd‖vk‖2. (3.32)

Calculating (3.32) recursively, the solution of the discrete-time equation can
be obtained as:

V (ek) ≤ V (e0)

(
1− 1

σd

)k
+ σd

k−1∑
l=0

(
1− 1

σd

)k−1−l
‖vl‖2

≤ V (e0)

(
1− 1

σd

)k
+ σd‖v‖2∞

k−1∑
l=0

(
1− 1

σd

)k−1−l
.

(3.33)

The term∑k−1
l=0

(
1− 1

σd

)k−1−l
in (3.33) can be written as∑0

`=−k−1
(
1− 1

σd

)k−1+`

with l = −` and ` ∈ [−(k−1),0], which, in turn, can be written as∑k−1
l̃=0

(
1− 1

σd

)l̃
with ` = l̃− (k− 1) and l̃ ∈ [0,(k− 1)]. Since the last sum is a geometric series
and σd ≥ 1, then:

k−1∑
l̃=0

(
1− 1

σd

)l̃
= σd − σd

(
1− 1

σd

)k
≤ σd. (3.34)

Thus, (3.33) can be calculated by:

V (ek) ≤ V (e0)

(
1− 1

σd

)k
+ σ2

d‖v‖2∞. (3.35)

From (3.31), equation (3.35) can be rewritten as:

V (ek) ≤ σd‖e0‖2
(

1− 1
σd

)k
+ σ2

d‖v‖2∞. (3.36)

Also from (3.31), (3.36) results in:

‖ek‖ ≤
√
σd‖e0‖

(
1− 1

σd

)k/2
+ σd‖v‖∞. (3.37)
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Therefore, the system is input-to-state stable with respect to vk with the ISS
gain given by σd‖v‖∞, and that the ISS gain with respect to dk is calculated by
σd‖Bd‖‖dk‖∞. This concludes the proof. �

3.3.2 Virtual actuator

Theorem 3.2 Consider the faulty LPV system (3.6) and that there exist sym-
metric positive definite matrices Q̃i ∈ Rn×n, matrices Xi ∈ Rp×n, Zi ∈ Rp×p,
i = 1, . . . ,N , and a scalar σa ≥ 1 such that the following LMIs are feasible:



−Q̃j +BfiXj +XT
j B

T
fi

? ? ? ?

0 −I ? ? ?

Q̃iA
T
i Q̃i −Q̃i ? ?

I 0 0 −σaI ?

−Xj + ZTj B
T
fi

0 Yi 0 −Zj −ZTj


< 0 (3.38)

∀i,j = 1, . . . ,N . Then, the difference state (3.15) is input-to-state stable with
respect to the input (uc,k,ek) with ISS gain calculated by max(σa max1≤i≤N ‖Li‖
×max1≤j≤N ‖Cfj‖,σa‖B∆‖). Moreover, the virtual LPV actuator gain in (3.14)
is given by:

Mi = YiQ̃
−1
i . (3.39)

Proof. Consider:
Ṽ (x∆,k) = xT∆,kP̃ (θk)x∆,k, (3.40)

where P̃ (θk) =
∑N
i=i θi,kP̃i with P̃i = Q̃−1

i , as an ISS Lyapunov candidate func-
tion for the difference state (3.15). Furthermore, P̃ (θk+1) =

∑N
j=1 θj,k+1P̃j .
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Notice that Q̃i and Zi are nonsingular. Defining Yi = MiQ̃i in (3.38) and pre-
and post-multiplying the resulting matrix by diag{I,I,Q̃−1

i ,I,I} and its transpose,
respectively, results in:



−Q̃j +BfiXj +XT
j B

T
fi

0 Ai I −Xj +BfiZj

? −I I 0 0
? ? −Q̃−1

i 0 MT
i

? ? ? −σaI 0
? ? ? ? −Zj −ZTj


< 0. (3.41)

In inequality (3.41) define P̃i = Q̃−1
i , Hi = Z−Ti and Fi = P̃iX

T
i Hi, and one

gets:


−P̃−1
j + Φ4 0 Ai I −P̃jFjH−1

j +BfiH
−T
j

? −I I 0 0
? ? −P̃i 0 MT

i

? ? ? −σaI 0
? ? ? ? −H−Tj −H−1

j


< 0, (3.42)

Φ4 = BfiH
−T
j F Tj P̃

−1
j + P̃−1

j FjH
−1
j BT

fi .

Then, (3.42) is multiplied on the left by:

S3 =



0 0 0 0 Hj

0 I 0 0 0
0 0 I 0 0
0 0 0 I 0
P̃j 0 0 0 −Fj


, (3.43)

and on the right by its transpose, respectively, yielding:


−Hj −HT
j 0 HjMi 0 BT

fi
P̃j + F Tj

? −I I 0 0
? ? −P̃i 0 ATi P̃j −MT

i F
T
j

? ? ? −σaI P̃j

? ? ? ? −P̃j


< 0. (3.44)
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Thereafter, multiply the inequality (3.44) by θi,k and θj,k+1 and summing it
up for all i,j = 1, . . . , N , results in:



−H(θk+1)−H(θk+1)
T 0 H(θk+1)M(θk) 0 Φ5

? −I I 0 0
? ? −P̃ (θk) 0 Φ6

? ? ? −σaI P̃ (θk+1)

? ? ? ? −P̃ (θk+1)


< 0,

(3.45)
Φ5 = Bf (θk)

T P̃ (θk+1) + F (θk+1)
T ,

Φ6 = A(θk)
T P̃ (θk+1)−M(θk)

TF (θk+1)
T .

Then, pre- and post-multiplying (3.45) on the left by:

S4 =



0 0 0 0 P̃−1(θk+1)

0 I 0 0 0
MT (θk) 0 I 0 0

0 0 0 I 0


, (3.46)

and on the right by its transpose, respectively, one gets:

−Q̃(θk+1) 0 A(θk) +Bf (θk)M(θk) I

? −I I 0
? ? −Q̃−1(θk) 0
? ? ? −σaI


< 0. (3.47)

Consider x∆,k+1 = (A(θk) + Bf (θk)M(θk))x∆,k + wk and use a Schur comple-
ment argument in (3.47), resulting in:

−P̃ (θk) + I 0
? −σaI

+ [
A(θk) +Bf (θk)M(θk) I

]T

× P̃ (θk+1)
[
A(θk) +Bf (θk)M(θk) I

]
< 0.

(3.48)
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Pre- and post-multiplying the inequality (3.48) by
[
xT∆,k wTk

]
and its trans-

pose, respectively, one obtains:

xT∆k+1P̃ (θk+1)x∆,k+1 − xT∆,kP̃ (θk)x∆k ≤ −x
T
∆,kx∆,k + σaw

T
k wk. (3.49)

After this, using (3.40) and wk = B∆uc,k −L(θk)Cf (θk)ek in (3.49), yields:

Ṽ (x∆,k+1)− Ṽ (x∆,k) ≤ −‖x∆,k‖2 + σa‖B∆‖2‖uc,k‖2 + σac
2
1c

2
2‖ek‖2, (3.50)

where c1 = max1≤i≤N ‖Li‖ and c2 = max1≤j≤N ‖Cfj‖.
Assuming the LMIs in (3.47) are feasible, then:

−I I

? −Q̃(θk)−1

 < 0 and

−Q̃(θk+1) I

? −σaI

 < 0. (3.51)

Using a Schur complement argument, it follows that Q̃(θk)−1 = P̃ (θk) > I and
Q̃(θk+1)

−1 = P̃ (θk+1) ≤ σaI, and consequently:

‖x∆,k‖2 ≤ Ṽ (x∆,k) ≤ σa‖x∆,k‖2. (3.52)

Then, by (3.50) and (3.52), the closed-loop system is input-to-state stable with
respect to uc,k and ek and following the similar steps as described in the proof
of Theorem 3.1, it is possible to obtain the ISS gain with respect to uc,k and to
ek, as σa‖B∆‖‖uc‖∞ and σac1c2‖e‖∞, respectively. This concludes the proof. �

3.3.3 Combination of the virtual sensor with the virtual actuator

The interconnection between the virtual sensor and the virtual actuator is given
by: ek+1

x∆,k+1

 =

A(θk) + L(θk)Cf (θk) 0
−L(θk)Cf (θk) A(θk) +Bf (θk)M(θk)


 ek

x∆,k


+

 0
B∆

uc,k +
−Bd

0

 dk,
(3.53)
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and according to [21], the following lemma can be stated.

Lemma 3.1 [21] If the virtual sensor gains of the error system (3.12) and the
virtual actuator gains of the difference state system (3.15) are designed by the con-
ditions of Theorems 3.1 and 3.2, then the interconnection given in (3.53) is also
input-to-state stable. Further, the ISS gain with respect to dk is c3

√
µσdc5‖d‖∞

and with respect to uc,k is c4
√
σac5‖uc‖∞, with:

c1 = max
1≤i≤N

‖Li‖, c2 = max
1≤j≤N

‖Cfj‖, c3 = ‖Bd‖, c4 = ‖B∆‖,

µ = σac
2
1c

2
2 + 1, c5 = max(µσd,σa).

(3.54)

Proof. Following the same procedure of [21, Appendix A.3], consider:

V̄ (ek,x∆,k) = µV (ek) + Ṽ (x∆,k) (3.55)

an ISS Lyapunov candidate function with µ > 0 for the interconnection, V (ek)
given by (3.18) and Ṽ (x∆,k) by (3.40). Moreover,

V̄ (ek+1,x∆,k+1)− V̄ (ek,x∆,k) = µV (ek+1)− µV (ek) + Ṽ (x∆,k+1)− Ṽ (x∆,k).
(3.56)

From (3.29), (3.50) and with vk = −Bddk, (3.56) can be written as:

V̄ (ek+1,x∆,k+1)− V̄ (ek,x∆,k) ≤
(
σac

2
1c

2
2 − µ

)
‖ek‖2 + µσd‖Bd‖2‖dk‖2

− ‖x∆,k‖2 + σa‖B∆‖2‖uc,k‖2.
(3.57)

Choosing µ = σac
2
1c

2
2 + 1 and defining c3 = ‖Bd‖ and c4 = ‖B∆‖, results in:

V̄ (ek+1,x∆,k+1)− V̄ (ek,x∆,k) ≤ −‖ek‖2 − ‖x∆,k‖2 + µσdc
2
3‖dk‖2 + σac

2
4‖uc,k‖2

≤ −
∥∥∥∥∥
[
eTk xT∆,k

]T ∥∥∥∥∥
2
+ µσdc

2
3‖dk‖2 + σac

2
4‖uc,k‖2.

(3.58)

Thus, the interconnection (3.53) is input-to-state stable with respect to dk and
uc,k. From (3.31) and (3.52), it can be written that:

µ‖ek‖2 + ‖x∆,k‖2 ≤ V̄ (ek,x∆,k) ≤ µσd‖ek‖2 + σa‖x∆,k‖2. (3.59)
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Defining c5 = max(µσd,σa) and er =
[
eTk xT∆,k

]
and replacing in (3.59),

gives:
‖er‖2 ≤ V̄ (er,k) ≤ c5‖er,k‖2, (3.60)

with µ ≥ 1. Performing a procedure similar to that presented in the proof of
Theorem 3.1, the ISS gain of the interconnection (3.53) with respect to dk and
uc,k is given by c3

√
µσdc5‖d‖∞ and c4

√
σac5‖uc‖∞, respectively. �

Notice that based on [21], the following theorem can also be presented.

Theorem 3.3 [21] Consider the faulty LPV system (3.6) and assume that the
nominal closed-loop system is composed of the nominal system (3.1) and the de-
signed nominal controller characterized in Remark 2.1. If there exist virtual sen-
sor gains as in (3.17) and virtual actuator gains as in (3.39) such that (3.16) and
(3.38) are satisfied, then the reconfigured closed-loop system is input-to-output
stable with respect to the input (rk,dk) and the output (ek,x∆,k).

Proof. It follows similar steps as the one in [21, Appendix A.4], replacing Bf
by Bf (θk), Cf by Cf (θk), B by B(θk) and C by C(θk).
Consider the fact that the IOS of the closed-loop system is equivalent to the

IOS of the interconnection of the nominal system (3.1) with the nominal con-
troller characterized in Remark 2.1 and the dynamics of the estimation error
(3.12) with the dynamics of the difference state (3.15), as shown in Figure 6.
Then, the reconfigured closed-loop system consists of the faulty system (3.6),
the virtual sensor (3.10), the virtual actuator (3.13) and the nominal controller.
With x∆,k = x̃k− x̂f ,k and ek = x̂f ,k−xf ,k, the following equations are obtained:

ΣP̃ =

 x̃k+1 = A(θk)x̃k +B(θk)uc,k

yc,k = C(θk)x̃
(3.61a)

ΣC =

 xc,k+1 = fc(xc,k,yc,k,rk)
uc,k = hc(xc,k,yc,k,rk)

(3.61b)

ek+1 = (A(θk) + L(θk)Cf (θk))ek −Bddk (3.61c)
x∆,k+1 = (A(θk) +Bf (θk)M(θk))x∆,k + L(θk)Cf (θk)ek +B∆uc,k, (3.61d)

where ΣP̃ in (3.61a) can be seen as the dynamics of the nominal system (3.1)
and ΣC is an arbitrary controller.
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Figure 6: Closed-loop system as a interconnection of the nominal system (3.1) with the
nominal controller (Remark 2.1) and the dynamics of the estimation error
(3.61c) with the dynamics of the difference state (3.61d). Adapted from [21].

The system (3.61) can be considered as a cascade system, as depicted in the
Figure 6. According to Remark 2.1, the closed-loop system composed of the
nominal controller ΣC and the system (3.61a) is also input-to-output stable with
respect to the input (rk,dk) and with the output (uc,k,xk). Moreover, from
theorems 3.1 and 3.2, (3.61c) and (3.61d) are input-to-state stable with respect
to dk and (uc,k,ek). From Lemma 3.1, the interconnection of (3.61c) with (3.61d)
is input-to-state stable with respect to (uc,k,dk), and, consequently, it is input-
to-output stable with respect to the output (ek,x∆,k). Thus, according to [21,
Theorem 2, Appendix A.4], it can be concluded that the connection (3.61) is
input-to-output stable with respect to the input (rk,dk) and the output (ek,x∆,k).
This concludes the proof. �

Considering theorems 3.1 and 3.2 proposed in this chapter, notice that the
fundamental difference with respect to [21, Theorem 3] and [21, Theorem 4] is
that the input and output matrices of the faulty LPV model described in (3.16)
and (3.38) are parameter-dependent. Thus, the main advantage and novelty of
the proposed virtual sensor and actuator designs becomes evident. It should
also be noticed that the reconfiguration block presented in [21] only allows its
use for LPV systems with constant input and output matrices (Bf and Cf ),
therefore only matrix A may depend on the system time-varying parameters,
which constraints its applicability as it is discussed in the experimental section
in the sequel. Theorems 3.1 and 3.2, on the other hand, allow to deal with
parameter-dependent matrices Bf and Cf , enabling the use of virtual sensors
and actuators for a larger class of nonlinear systems that can be described by
LPV models.
Another important issue is that in [21], the sensor and actuator faults are

not considered as time-varying parameters, therefore, the design of the virtual
sensor and actuator must be performed for each type and magnitude of fault that
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occurs, individually. Then, for each new fault in the system, a new project must
be carried out, updating the values of gains of the virtual sensor and the virtual
actuator. That is, the conditions in [21, Theorem 3] and [21, Theorem 4] must
be solved in real-time so that it can be used for each different fault that occurs.
However, depending on the control system and the software used, this is often
not possible. Moreover, the feasibility of the conditions is not ensured for a set
of faults. On the other hand, using theorems 3.1 and 3.2, it is only necessary
to define the maximum and minimum values of the faults that may occur in the
sensors and actuators of the system and calculate the gains of the reconfiguration
block only once, before executing the control algorithm in real-time. Thus, with
only one reconfiguration block design, the system becomes robust to different
types of faults that may occur, not depending on solving LMIs in real-time.
The previous comparisons can also be seen through the flowcharts in Figure 7,

in which the approach proposed in this chapter and the one proposed in [21]
are compared. It is important to note that in the left flowchart, the approach
proposed in this work, the gains of the virtual sensor and the virtual actuator
are calculated, respectively, by theorems 3.1 and 3.2, before the execution of the
control algorithm. On the other hand, in the flowchart on the right, the gains
are calculated by [21, Theorem 3] and [21, Theorem 4], for each new fault in
the sensor and/or actuator. In addition, before executing the control algorithm,
as there is still no fault detection, the reconfiguration block consists only of a
virtual sensor, designed for the nominal system, i.e., with Cf = C.

3.4 experimental results

The set-up of a nonlinear coupled tank system, as presented in Section 2.6, is
used to illustrate the effectiveness of the new methodology proposed. Thus, a
discrete-time model of (2.13) is obtained using Euler’s method [115]. Thus:


hk+1 =

1− α1,kα3,k α1,kα3,k
α1,k
S2

1− α1,k + α2,k
S2

hk +
TsKb1α3,k TsKb2α3,k

0 0

 ũk

yk =

1 0
0 1

hk,
(3.62)
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Figure 7: Comparative flowcharts of the methodology proposed in this chapter and the
one proposed in [21]. In the left flowchart, the gains of the reconfiguration
block are calculated by theorems 3.1 and 3.2 proposed in this chapter. In the
right flowchart, the gains of the virtual sensor are calculated by [21, Theorem
3] and the gains of the virtual actuator by [21, Theorem 4].

where α1,k = Ts/R12(h1,k,h2,k), α2,k = Tsqo(h2,k)/h2,k and α3,k = 1/S1(h1,k)

are the time-varying parameters grouped in the vector αk = [α1,k α2,k α3,k]
T ,

with R12(h1(t),h2(t)) = (0.412 (h1 − h2) + 11.488) × 10−3 and qo(h2(t)) =

12.741h2(t) + 817.674 cm3/s. From (2.13), qi1(u1(t)) = Kb1u1 + 354.781 cm3/s,
qi2(u2(t)) = Kb2u2 + 220.085 cm3/s, Kb1 = 16.998 and Kb2 = 13.201 are the
pump static gains and ũk = [ũ1,k ũ2,k]

T , with ũ1,k = u1,k + 354.781/Kb1 and
ũ2,k = u2,k + 220.085/Kb2 . The sampling time Ts = 2 seconds is chosen so that
the fastest time constant of the system stays between 7 and 8 samples [114]. For
more details, return to Section 2.6.
Considering the range for 20 cm ≤ h1 ≤ 74 cm and 12 cm ≤ h2 ≤ 50 cm, and

also combining the maximum and minimum values of α1, α2, and α3, an LPV
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model as described in (3.1) with N = 8 vertices is used to describe the nonlinear
system (3.62), with the following matrices:

A1 =

0.4809 0.5191
0.0358 0.9106

 ;A2 =

0.9567 0.0433
0.0358 0.9106

 ;A3 =

0.4809 0.5191
0.0358 0.9449

 ;

A4 =

0.9567 0.0433
0.0358 0.9449

 ;A5 =

0.7008 0.2992
0.0206 0.9258

 ;A6 =

0.9751 0.0249
0.0206 0.9258

 ;

A7 =

0.7008 0.2992
0.0206 0.9601

 ;A8 =

0.9751 0.0249
0.0206 0.9601

 ; C =

1 0
0 1

 ;

B1 = B3 = B5 = B7 =

0.1632 0.1267
0 0

 ;

B2 = B4 = B6 = B8 =

0.0136 0.0106
0 0

 .

(3.63)

3.4.1 Controller Design

The nominal gain-scheduled controller is designed according to the procedure
presented in Section 2.6.1, where Ai and Bi are given in (3.63) and with Ñ = N

in (2.15). The obtained gains are presented in Section A.1.

3.4.2 Design of Reconfiguration Blocks

To design the reconfiguration blocks, fault scenarios are considered for the two
sensors and the two actuators of the process. Thus, the virtual sensor is designed
for γ1,k ≤ γ1,k ≤ γ1,k and γ2,k ≤ γ2,k ≤ γ2,k, with γ1,k = 0, γ1,k = 1, γ2,k = 0.04
and γ2,k = 1, and the virtual actuator for φ1,k ≤ φ1,k ≤ φ1,k and φ2,k ≤ φk2 ≤
φ2,k, with φ1,k = 0.5, φ1,k = 1, φ2,k = 0 and φ2,k = 1, that is, time-varying
faults are allowed in the ranges given. Therefore, the faulty system has seven
time-varying parameters, grouped in θ = [α1 α2 α3 γ1 γ2 φ1 φ2]

T , each of them
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with a maximum and a minimum value, resulting in an LPV system withN = 128
vertices, given by the following matrices:

A{q1} = A1; A{q2} = A2

A{q3} = A3; A{q4} = A4

A{q5} = A5; A{q6} = A6

A{q7} = A7; A{q8} = A8



∀q1 = 1, . . . ,16; q2 = 17, . . . ,32;
q3 = 33, . . . ,48; q4 = 49, . . . ,64;
q5 = 65, . . . ,80; q6 = 81, . . . ,96;
q7 = 97, . . . ,112; q8 = 113, . . . ,128.

(3.64)

Bf{r1+16×l1}
= B1diag{φ1,k,φ2,k}

Bf{r2+16×l1}
= B1diag{φ1,k,φ2,k}

Bf{r3+16×l1}
= B1diag{φ1,k,φ2,k}

Bf{r4+16×l1}
= B1diag{φ1,k,φ2,k}

Bf{r1+16×l2}
= B2diag{φ1,k,φ2,k}

Bf{r2+16×l2}
= B2diag{φ1,k,φ2,k}

Bf{r3+16×l2}
= B2diag{φ1,k,φ2,k}

Bf{r4+16×l2}
= B2diag{φ1,k,φ2,k}



∀r1 = 1,5,9,13;
r2 = 2,6,10,14;
r3 = 3,7,11,15;
r4 = 4,8,12,16;
l1 = 0,2,4,6;
l2 = 1,3,5,7.

(3.65)

Cf{s1+16×l3}
= diag{γ1,k,γ2,k}C

Cf{s2+16×l3}
= diag{γ1,k,γ2,k}C

Cf{s3+16×l3}
= diag{γ1,k,γ2,k}C

Cf{s4+16×l3}
= diag{γ1,k,γ2,k}C



∀s1 = 1, . . . ,4; s2 = 5, . . . ,8;
s3 = 9, . . . ,12; s4 = 13, . . . ,16;
l3 = 0, . . . ,7.

(3.66)

From that, the virtual sensor is designed by Theorem 3.1 with (3.64) and
(3.66) and using the software MOSEK® [116], the gains Li given in (3.17), for
i = 1, . . . ,N , presented in Section A.2, are found with a minimum value of
σd = 991.16. Similarly, the virtual actuator is designed by Theorem 3.2 with
(3.64) and (3.65) and the gains Mi in (3.39), for i = 1, . . . ,N , are calculated for
the minimum value of σa = 500.8 and shown in Section A.3. In addition, the
matrix R(θk) in (3.13) is designed such that ‖B∆uc,k‖ is the minimum possible
and is calculated according to the type of actuator faults, during the execution
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of the control algorithm. In the presence of a total fault in the second actuator,
the static gain matrix R(θk) is computed as follows:

R(θk) = −
1
φ1,k

1 Kb2
Kb1

0 0

 , (3.67)

otherwise:

R(θk) = −


1
φ1,k

0

0 1
φ2,k

 . (3.68)

Remark 3.1 Using the gain matrix R(θk) given in (3.67) and (3.68) for each
type of fault, it is possible to notice that in all actuator fault scenarios of the
experiments performed, Bf (θk)R(θk) = −B(θk), that is, B∆(θk) = 0. Thus, the
control signal uc,k generated by the nominal controller does not interfere with the
dynamics of the difference state (3.15) and wk = −L(θk)Cf (θk)ek.

Remark 3.2 Notice that, as the polytope of the faulty system is elaborated, it is
not possible to contemplate total faults in all sensors and actuators of the process.
This is because one of the vertices of the input and output matrices would include
the total loss of system actuation and measurement, and the LMI conditions of
theorems 3.1 and 3.2 become infeasible.

In the following, the experimental results for three different fault scenarios:
sensor faults, actuator faults, and simultaneous sensor and actuator faults are
presented. The main objective is to evaluate the performance of the closed-loop
system after the faults happen. For this, the process time-responses are analyzed
and compared for three different methodologies: the robust FTC strategy pro-
posed in this chapter (called RFTC, lines in red), the approach proposed in [21]
(called FTC[21], lines in blue), and the system without any FTC strategy, only
with the nominal controller (2.16) (called WFTC, lines in green). In the latter,
when there are faults in the sensors and/or actuators, no changes are made to
the closed-loop system, thus, stability and performance may not be guaranteed
by the controller. Also, it is assumed that it is not possible to design the virtual
sensor and actuator gains in real-time. However, as discussed in the previous
section and in the flowchart depicted in Figure 7, in order to use the reconfigura-
tion block FTC presented in [21], it is necessary that the LMI conditions in [21,
Theorem 3] and [21, Theorem 4] run in real-time. As this is not possible in this
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case, the gains are obtained considering a constant value of the input matrix and
fixed faults of the sensors and actuators, since the methodology does not allow
the matrices Bf and Cf to be dependent on time-varying parameters. For this
case, the input matrix is given by:

B =

0.0571 0.0443
0 0

 , (3.69)

and the sensor and actuator faults used in the design are γ1 = 1, γ2 = 0.5,
φ1 = 0.85, φ2 = 1. Through [21, Theorem 3] and [21, Theorem 4], the resulting
gains are Li, for i = 1, . . . ,N , with the minimum σd = 1.0013, and Mi, for
i = 1, . . . ,N , with the minimum σa = 495.10. For the sake of space and to keep
objectivity, the values of the gains are omitted in this chapter.
Furthermore, performance indices are calculated so that the system perfor-

mance can be quantitatively evaluated. In particular, IVU1 and IVU2 denote
the IVU index with respect to the first and second actuator, respectively. The
values of IAE, ISE, IVU1 and IVU2 for RFTC, WFTC and FTC [21] are ob-
tained and depicted in graphs, normalized with respect to the last one. It is
important to notice that the lower the index, the better the performance. That
is, the more interior the graph, the better the system performance.

3.4.3 Sensor faults

Experimental tests are performed to evaluate the performance of the closed-loop
system after the occurrence of sensor faults for RFTC, FTC [21] and WFTC. The
first test considers a partial fault of 50% in the measurement of the second sensor,
namely (γ1 = 1, γ2 = 0.5, fault f1) for t ≥ 300s, and also a total loss in the
measurement of the first sensor, i.e. (γ1 = 0, γ2 = 0.5, fault f2) after t ≥ 900s,
as depicted in Figure 8. Notice from Figure 8 that after the occurrence of the
first fault, no significant change in the system response can be observed for any
strategy. This is because the fault of the second sensor does not interfere with
the reference tracking, which is performed only for level h1. Moreover, the virtual
sensors of RFTC and FTC [21] are designed to cover this fault. However, after
the second fault, using WFTC, the system exceeds the security limit value and
activates the plant protection system, which immediately shuts down the pumps
preventing the overflow of the tank T3. With FTC [21], level h1 becomes highly
oscillatory, since its virtual sensor proposal is not designed for this type of fault.
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Finally, with RFTC, the fault barely modifies the controlled outputs and the
system continues to track the reference normally. Therefore, the reconfiguration
block proposed in this chapter can maintain the closed-loop system behavior
close to the nominal one, even with different sensor faults and even with the
total loss of sensor measurement by which the reference is tracked.
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Figure 8: Experiments for sensor faults: Levels h1 and h2 (top) and control signals u1
and u2 (bottom).

Figure 9 presents the values of IAE, ISE, IVU1 and IVU2 for RFTC, WFTC
and FTC [21]. In this case, it is evident that the performance of RFTC is
significantly better than the others.

3.4.4 Actuator faults

The next experiments are performed to simulate actuator faults, as depicted
in Figure 10, where a complete loss of the second actuator, namely (φ1 = 1,
φ2 = 0, fault f1), occurs from t ≥ 300s and also a partial fault of 15% in the
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Figure 9: Performance indices for sensor faults normalized by the worst case (FTC
[21]).

efficiency of the first pump, that is (φ1 = 0.85, φ2 = 0, fault f2), occurs after
t ≥ 900s. As can be seen, after the first fault, the response of the system with
the reconfiguration block FTC [21] becomes oscillatory and fails to track the
reference, because its virtual actuator design does not address this type of fault
and does not take into account an input matrix that is dependent on time-varying
parameters. Moreover, from the graphs at the bottom of the Figure 10 it can be
noticed that the control signal applied to pump 1 (u1) varies aggressively between
the maximum and minimum values, being saturated at many times and, even
with total loss of the second actuator, a nonzero control signal continues to be
applied to pump 2 (u2). On the other hand, the system with WFTC can adjust
the control signals to keep the system stable and tracking the reference, with a
larger oscillation than RFTC around t = 300s, due to the integrator presence and
process configuration. However, this is not appropriate as there is no guarantee
of stability of the faulty system, and there is a continuity in the application of
a control signal (often saturated) on pump 2. Finally, the system with RFTC
remains stable and satisfactorily tracking the reference, even with a different loss
of functionality of the actuators, as it has been designed to be robust to a set
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of faults and not to compensate only one fault as the FTC [21]. Therefore, as
expected, the reconfiguration block proposed in this chapter is more effective for
reconfiguring a system subject to time-varying faults.
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Figure 10: Experiments for actuator faults: Levels h1 and h2 (top) and control signals
u1 and u2 (bottom).

Notice that the performance indices are shown in Figure 11, where a better
performance of RFTC can be seen. The index IVU1 of WFTC is slightly lower
than that of RFTC. However IVU2 is relatively higher, indicating that there is
a greater control effort on the actuator that is not acting on the system.

3.4.5 Simultaneous sensor and actuator faults

Tests are also performed to evaluate the system responses for simultaneous ac-
tuators and sensor faults, as depicted in Figure 12. From t ≥ 300s there is a
total loss of the second actuator, i.e. (γ1 = 1,γ2 = 1,φ1 = 1,φ2 = 0, fault
f1). From t ≥ 500s the second sensor has its measurement reduced by 50%, i.e.
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Figure 11: Performance indices for actuator faults normalized by the worst case (FTC
[21]).

(γ1 = 1,γ2 = 0.5,φ1 = 1,φ2 = 0, fault f2). From t ≥ 900s the first actuator
has 15% loss in efficiency, namely (γ1 = 1,γ2 = 0.5,φ1 = 0.85,φ2 = 0, fault f3).
Finally, from t ≥ 1200s, there is also a complete loss of measurement provided
by the first sensor, i.e. (γ1 = 0,γ2 = 0.5,φ1 = 0.85,φ2 = 0, fault f4). In this case,
FTC [21] is composed of a virtual sensor and a virtual actuator designed as pre-
sented in Section 3.4.2. However, similarly to the previous fault scenarios, that
design does not allow the reconfiguration block to cover different faults. Thus,
after the occurrence of the first fault, the variable h1 becomes extremely oscil-
latory as well as the control signal, and reference tracking is no longer possible.
Similar behavior also occurs to WFTC, where neither partial sensor faults nor
actuator faults significantly affect the system time-responses. On the other hand,
as seen before, when the first sensor fails completely, the nominal controller loses
the measurement that provides information to track the reference, causing the
control signal to saturate at the maximum and the level h1 to increase to arm
the security system. Finally, also as observed in other scenarios, as the RFTC
design covers all faults that occur along the experiment, the system response is
not significantly affected by the faults. In other words, the virtual sensor and
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the actuator, as proposed in this chapter, are capable of keeping the closed-loop
system stable and performing satisfactorily for the reference tracking case.
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Figure 12: Experiments for sensor and actuator faults: Levels h1 and h2 (top) and
control signals u1 and u2 (bottom).

Figure 13 shows the performance indices for simultaneous actuator and sensor
faults. Again, it can be concluded that the proposed methodology provides better
performance for the closed-loop system compared to the other approaches.

Remark 3.3 Considering the various real-time experiments, it can be noticed
that the reconfiguration block design proposed in this chapter is significantly more
efficient and more general than that proposed by [21]. This can be concluded
checking the graphs in Figures 9, 11 and 13, where in all cases, the performance
obtained by FTC [21] is worse. Once more, this is due to the fact that the
virtual sensor and the virtual actuator designs proposed in [21] are not robust
to different types of faults that occur in the real-world experiments performed in
the chapter, unlike RFTC. In addition, FTC [21] does not guarantee that the
closed-loop system is stable or that it performs reasonably well. This is because
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Figure 13: Performance indices for simultaneous actuator and sensor faults normalized
by the worst case (FTC [21]).

the LPV model of the process has a parameter-dependent input matrix and its
design is performed considering a constant input matrix.



4
FTC BASED ON UNKNOWN INPUT OBSERVER FOR
TAKAGI - SUGENO FUZZY SYSTEMS WITH UNMEASURED
PREMISE VARIABLES

This chapter proposes new sufficient conditions to guarantee the stability with
H∞ performance of the reconfiguration block based on Unknown Input Observer
for TS fuzzy systems with unmeasured premise variables. In a single project,
unlike [15, 20, 30], it is possible to ensure stability and the performance of the
faulty system close to the nominal one, for different types and magnitudes of
faults, which can be additive and/or multiplicative (partial and total) in both
sensors and/or actuators. Moreover, the design of the reconfiguration block takes
into account that the TS fuzzy model may be dependent on unmeasured premise
variables, including those that become unmeasured due to sensor faults, in ad-
dition to being based on an UIO to deal with disturbances that may affect the
system, a problem that is also not addressed in the current literature [15, 20,
30]. A case study is presented with computer simulations of the FTC strategy
implemented in the control of the nonlinear coupled tanks system investigated
in Section 2.6. At this time, the process is described by the TS fuzzy model.

4.1 faulty takagi-sugeno fuzzy systems

Consider the discrete-time TS fuzzy system ΣP , adapted from [32], given by:

ΣP =



xk+1 =
N1∑
i=1

N2∑
j=1

αi(zα,k)βj(zβ,k) (Aijxk +Bijuk +Ddk)

, A(αk,βk)xk +B(αk,βk)uc,k +Ddk,
yk = Cxk,

(4.1)

where xk ∈ Rn represents the state vector, uk ∈ Rm is the sequence of control
inputs, yk ∈ Rp is the output, and dk ∈ Rd denotes an unknown disturbance
sequence. Matrices A(αk,βk) ∈ Rn×n, B(αk,βk) ∈ Rn×m, D ∈ Rn×d, and
C ∈ Rp×n relate the dynamics and the output of the system. In addition αi(zα,k),
i = 1, . . . ,N1, are the membership functions that depend only on the measured
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premise variables and βj(zβ,k), j = 1, . . . ,N2, are the membership functions that
depend on at least one unmeasured premise variable.
The faulty model, denoted by ΣPf , is considered to be the same as the plant

nominally represented by ΣP in (4.1), but with the indications of sensor and
actuator faults included in the multiplicative and additive forms in the dynamics
and output equations:

ΣPf =



xf ,k+1 =
N3∑
i=1

N4∑
j=1

ᾱi(z̄α,k)β̄j(z̄β,k)
(
Aijxf ,k +Bij

(
φ̂uf ,k + fa,k

)
+Ddk

)
, A(ᾱk,β̄k)xf ,k +B(ᾱk,β̄k)

(
φ̂uf ,k + fa,k

)
+Ddk

yf ,k = γ̂Cxf ,k + fs,k,
(4.2)

where fa,k =
[
fa1,k . . . fam,k

]T
∈ Rm and fs,k =

[
fs1,k . . . fsp,k

]T
∈ Rp rep-

resent the additive actuator and sensor fault vectors, respectively, φ̂ = diag{φ1,k,
. . . ,φm,k} denotes the multiplicative actuator faults and γ̂ = diag{γ1,k, . . . ,γp,k}
the multiplicative sensor faults, with φi,k, φj,k ∈ [0, 1], ∀i,j. It is important to
note that, when certain premise variables depend on measurements provided by
the system’s sensors, in case of sensor faults, these measurements will obviously
be corrupted and can be considered as unmeasured. Therefore, the membership
functions β̄j(z̄β,k), j = 1, . . . ,N4, depend both on the unmeasured premise vari-
ables zβ,k and on the premise variables that have their measurements affected by
sensor faults, and the membership functions ᾱi(z̄α,k), i = 1, . . . ,N3, depend only
on the premise variables that remain measured after the occurrence of faults.
In addition, if the measurements of the system’s premise variables are not af-
fected by sensor faults, ᾱi(z̄α,k) = αi(zα,k), i = 1, . . . ,N1 with N1 = N3, and
β̄j(z̄β,k) = βj(zβ,k), j = 1, . . . ,N2 with N2 = N4.
Inspired by [117, 118], it is possible to describe the faulty system (4.2) as:

ΣPf =



xf ,k+1 =
N3∑
i=1

N4∑
j=1

ᾱi(z̄α,k)β̄j(z̄β,k)
(
Aijxf ,k +Bij

(
φ̂uf ,k + fa,k

)
+Ddk

+Bijuf ,k −Bijuf ,k
)

, A(ᾱk,β̄k)xf ,k +B(ᾱk,β̄k) (uf ,k + f̄a,k) +Ddk,
yf ,k = γ̂Cxf ,k + fs,k +Cxf ,k −Cxf ,k = Cxf ,k + F f̄s,k,

(4.3)
where f̄a,k =

(
φ̂− I

)
uf ,k + fa,k, f̄s,k = (γ̂ − I)Cxf ,k + fs,k and F = I ∈ Rp×p

is the sensor fault matrix. That is, the fault vectors f̄a,k and f̄s,k are seen by



4.2 problem formulation 53

the system in an additive way, but in reality they can represent both additive
and/or multiplicative actuator and sensor faults, respectively.

Assumption 4.1 [118] The matrices C and D in (4.3) are such that:

rank (CD) = rank (D) . (4.4)

4.2 problem formulation

Similar to the one presented in Chapter 3, in order to maintain the performance of
the existing closed-loop system, it is proposed a reconfiguration block composed
of a virtual sensor and a virtual actuator capable of hiding the faults of the
nominal controller. Furthermore, the approach makes it possible to deal with
unmeasured premise variables (from the system or affected by sensor faults) and
with unknown input disturbances that may affect the system’s behavior. As the
virtual sensor can be seen as an observer of the faulty system, the methodologies
proposed in [32] and [37] are used as inspiration for the problem formulation.

4.2.1 Virtual Sensor

The virtual sensor based on Unknown Input Observer, adapted from [37], is
described by the following equations:


x̂f ,k+1 =
N3∑
i=1

N4∑
j=1

ᾱi(z̄α,k)β̄j( ˆ̄zβ,k)
(
TAij x̂f ,k + TBij (uf ,k + f̄a,k) + Lij(yf ,k − ŷf ,k)

)
+Nyf ,k+1 −NFf̄s,k+1

, TA(ᾱk, ˆ̄βk)x̂f ,k + TB(ᾱk, ˆ̄βk) (uf ,k + f̄a,k) + L(ᾱk, ˆ̄βk)(yf ,k − ŷf ,k)

+NCxf ,k+1,
ŷf ,k = Cx̂f ,k + F f̄s,k,

(4.5)
where x̂f ,k ∈ Rn is the estimated state by the virtual sensor of the faulty system,
uf ,k ∈ Rm is the control sequence input generated by the virtual actuator defined
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later in the next section, T ∈ Rn×n, N ∈ Rn×p, and L(ᾱk, ˆ̄βk) ∈ Rn×p are design
matrices, the latter being the virtual sensor gain matrix given by:

N3∑
i=1

N4∑
j=1

ᾱi(z̄α,k)β̄j( ˆ̄zβ,k)Lij , L(ᾱk, ˆ̄βk). (4.6)

The matrices T and N should be chosen so that the following equations are
satisfied:

T +NC = I,
TD = 0,

(4.7)

where N can be calculated as:

N = D (CD)† , (4.8)

with the existence of the pseudo-inverse assured by Assumption 4.1.
Note that the membership functions β̄j( ˆ̄zβ,k), j = 1, . . . ,N4, are the same used

to describe the system in (4.3), but depending on the estimates of the premise
variables that are not measured and/or affected by sensor faults.

Remark 4.1 Note that the virtual sensor state equation (4.5) can be imple-
mented as:


ε1,k+1 =
N3∑
i=1

N4∑
j=1

ᾱi(z̄α,k)β̄j( ˆ̄zβ,k)
(
TAij x̂f ,k + TBij (uf ,k + f̄a,k) + Lij(yf ,k − ŷf ,k)

)
, TA(ᾱk, ˆ̄βk)x̂f ,k + TB(ᾱk, ˆ̄βk) (uf ,k + f̄a,k) + L(ᾱk, ˆ̄βk)(yf ,k − ŷf ,k),

x̂f ,k = ε1,k +Nyf ,k −NFf̄s,k,

where ε1,k ∈ Rn can be seen as an auxiliary variable.

The estimation error calculated between the state of the faulty system xf ,k
and the state estimated by the virtual sensor x̂f ,k is defined by ek = xf ,k − x̂f ,k
and has dynamics:

ek+1 = (T +NC)xf ,k+1 − x̂f ,k+1

, T
(
A(ᾱk,β̄k)xf ,k −A(ᾱk, ˆ̄βk)x̂f ,k

)
+ T

(
B(ᾱk,β̄k)−B(ᾱk, ˆ̄βk)

)
(uf ,k + f̄a,k)

−L(ᾱk, ˆ̄βk)Cek.
(4.9)
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As can be seen, equation (4.9) contains terms referring to the difference be-
tween the system matrices with the actual and estimated premise variables, re-
quiring an methodology that makes it possible to deal with these differences. As
the virtual sensor can be interpreted as an observer for the faulty system, the
development presented below to deal with the problem is based on the approach
proposed in [32] for the design of observers for continuous-time systems with
unmeasured premise variables.
Replacing x̂f ,k = xf ,k − ek in (4.9), results in:

ek+1 , T
(
A(ᾱk,β̄k)−A(ᾱk, ˆ̄βk)

)
xf ,k + T

(
B(ᾱk,β̄k)−B(ᾱk, ˆ̄βk)

)
ūk

+Aδ(ᾱk, ˆ̄βk)ek,
(4.10)

where Aδ(ᾱk, ˆ̄βk) = TA(ᾱk, ˆ̄βk)− L(ᾱk, ˆ̄βk)C and ūk = uf ,k + f̄a,k. The differ-
ences between the dynamics and input matrices can be written as:

J(ᾱk,β̄k)− J(ᾱk, ˆ̄βk) =
N3∑
i=1

N4∑
j=1

ᾱi(z̄α,k) (β̄j(z̄β,k)− β̄j( ˆ̄zβ,k)) Jij , (4.11)

where J(·) can represent matrices A(·) and B(·). The estimation error of the
premise variables can be defined as ez,k = z̄β,k − ˆ̄zβ,k, with ez,k = Hek, where
matrix H ∈ RNβ×n transforms the estimation error of the states into the esti-
mation error of the premise variables, with Nβ being the number of unmeasured
premise variables of the system. Applying Lemma 2.3, there is a c ∈]z̄β,k, ˆ̄zβ,k[

so that (4.11) can be calculated by:

J(ᾱk,β̄k)− J(ᾱk, ˆ̄βk) =
N3∑
i=1

N4∑
j=1

ᾱi(z̄α,k)∇β̄j(c)ez,kJij ,
N4∑
j=1
∇β̄j(c)ez,kJj(ᾱk),

(4.12)

where ∇β̄j(c) =
∂β̄j(c)
∂z̄β,k

, j = 1, . . . ,N4. As ∑N4
j=1 (β̄j(z̄β,k)− β̄j( ˆ̄zβ,k)) = 0, the

following slack matrices can be inserted: N4∑
j=1

(β̄j(z̄β,k)− β̄j( ˆ̄zβ,k))

(Y (ᾱk, ˆ̄βk)xf ,k + Z(ᾱk, ˆ̄βk)ūk
)

=

 N4∑
j=1
∇β̄j(c)ez,k

(Y (ᾱk, ˆ̄βk)xf ,k + Z(ᾱk, ˆ̄βk)ūk
)
= 0,

(4.13)
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with Y (ᾱk, ˆ̄βk) ∈ Rn×n and Z(ᾱk, ˆ̄βk) ∈ Rn×m. Considering (4.12) and (4.13),
the estimation error dynamics in (4.10) can be given by:

ek+1 ,
N4∑
j=1

(
Āj(ᾱk, ˆ̄βk)xf ,k + B̄j(ᾱk, ˆ̄βk)ūk

)
∇β̄j(c)Hek +Aδ(ᾱk, ˆ̄βk)ek, (4.14)

where Āj(ᾱk, ˆ̄βk) = TAj(ᾱk)+Y (ᾱk, ˆ̄βk) and B̄j(ᾱk, ˆ̄βk) = TBj(ᾱk)+Z(ᾱk, ˆ̄βk).
In addition, it can be written that:

N4∑
j=1

Āj(ᾱk, ˆ̄βk)xf ,k∇β̄j(c) = RA(ᾱk, ˆ̄βk)∆A, (4.15)

and

N4∑
j=1

B̄j(ᾱk, ˆ̄βk)ūk∇β̄j(c) = RB(ᾱk, ˆ̄βk)∆B, (4.16)

with

RA(ᾱk, ˆ̄βk) =
[
Ā1(ᾱk, ˆ̄βk) . . . ĀN4(ᾱk, ˆ̄βk)

]
, ∆A = (I ⊗ xf ,k)∇β̄(c),

RB(ᾱk, ˆ̄βk) =
[
B̄1(ᾱk, ˆ̄βk) . . . B̄N4(ᾱk, ˆ̄βk)

]
, ∆B = (I ⊗ ūk)∇β̄(c),

(4.17)

where ⊗ is the classical Kronecker product and

∇β̄(c) =


∇β̄1(c)

...
∇β̄N4(c)

 . (4.18)

Then, (4.14) is given by:

ek+1 ,
(
Aδ(ᾱk, ˆ̄βk) + R̄(ᾱk, ˆ̄βk)∆̄H

)
ek, (4.19)

where R̄(ᾱk, ˆ̄βk) =
[
RA(ᾱk, ˆ̄βk) RB(ᾱk, ˆ̄βk)

]
and ∆̄ =

[
∆TA ∆TB

]T
.

The following assumption is considered throughout this chapter.

Assumption 4.2 The following bounds are considered:
∥∥∥xf ,k

∥∥∥ ≤ κxf , ‖ūk‖ ≤

κū, and
∥∥∥∥∥∂β̄j∂z̄β

∥∥∥∥∥ ≤ κβ̄j , with j = 1, . . . ,N4. The functions β̄j(·) are precisely

known and continuously differentiable with a known and calculable derivative1.

1 For more details see [32].
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Thus, using Lemma 2.1, it is possible to obtain:

∇β̄T (c)∇β̄(c) =
N4∑
j=1
∇β̄Tj (c)∇β̄j(c) ≤

N4∑
j=1

κ2
β̄j
I. (4.20)

From Assumption 4.2,

∇β̄T (c)
(
I ⊗ (xTf ,kxf ,k + ūTk ūk)

)
∇β̄(c) = (xTf ,kxf ,k + ūTk ūk)∇β̄T (c)∇β̄(c)

≤
(
κ2
xf

+ κ2
ū

)
∇β̄T (c)∇β̄(c) ≤ κ2I,

(4.21)

with

κ =

√√√√√(κ2
xf

+ κ2
ū

) N4∑
j=1

κ2
β̄j

. (4.22)

In addition,

∇β̄T (c)
(
(I ⊗ xTf ,k)(I ⊗ xf ,k) + (I ⊗ ūTk )(I ⊗ ūk)

)
∇β̄(c)

= ∆TA∆A + ∆TB∆B = ∆̄T ∆̄ ≤ κ2I.
(4.23)

4.2.2 Virtual Actuator

The virtual actuator can be described by the following equations:

x̃k+1 , TA(ᾱk, ˆ̄βk)x̃k + TB(ᾱk, ˆ̄βk)uc,k +Nyf ,k+1 −NFf̄s,k+1

, TA(ᾱk, ˆ̄βk)x̃k + TB(ᾱk, ˆ̄βk)uc,k +NCxf ,k+1,
uf ,k , −M(ᾱk, ˆ̄βk)x∆,k + sk,
yc,k , Cx̃k,

(4.24)

where x̃k ∈ Rn is the reference state computed by the virtual actuator, uc,k ∈ Rm

is the control sequence generated by the nominal controller, uf ,k ∈ Rm is the
alternative control signal generated by the virtual actuator and used as input to
the faulty system and yc,k ∈ Rp is the output that is now supplied to the nominal
controller. In addition, sk ∈ Rm is a design signal and M(ᾱk, ˆ̄βk) ∈ Rm×n is the
virtual actuator gain matrix defined as:

N3∑
i=1

N4∑
j=1

ᾱi(z̄α,k)β̄j( ˆ̄zβ,k)Mij ,M(ᾱk, ˆ̄βk). (4.25)
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The difference between the reference state x̃k and the state estimated by the
virtual sensor x̂f ,k is called as difference state x∆,k, i.e. x∆,k = x̃k − x̂f ,k. This
state has the following dynamics:

x∆,k+1 ,
(
TA(ᾱk, ˆ̄βk) + TB(ᾱk, ˆ̄βk)M(ᾱk, ˆ̄βk)

)
x∆,k +wk, (4.26)

where wk = −L(ᾱk, ˆ̄βk)Cek + TB(ᾱk, ˆ̄βk) (uc,k − f̄a,k − sk) can be seen as a dis-
turbance to the dynamics of x∆,k. Therefore, the signal sk can be designed so
that the norm of the second term of wk has the smallest possible value.

Remark 4.2 As the virtual actuator (4.24) and the dynamics of the difference
state (4.26) depend only on the measured premise variables and those estimated
by the virtual sensor, it is not necessary to use the methodology proposed in [32]
to deal with differences between actual and estimated premise variables.

Remark 4.3 If the nominal controller has as inputs the membership functions
α`(zα,k) and βj(zβ,k), ` = 1, . . . ,N1, j = 1, . . . ,N2, with the proposed reconfig-
uration block, these inputs can become the membership functions ᾱ`(z̄α,k) and
β̄j( ˆ̄zβ,k), ` = 1, . . . ,N3, j = 1, . . . ,N4, that can be reorganized as estimates of
α`(zα,k) and βj(zβ,k).

Remark 4.4 Note that the virtual actuator state equation (4.24) can be imple-
mented as:  ε2,k+1 , TA(ᾱk, ˆ̄βk)x̃k + TB(ᾱk, ˆ̄βk)uc,k,

x̃k , ε2,k +Nyf ,k −NFf̄s,k,
(4.27)

where ε2,k ∈ Rn can be seen as an auxiliary variable.

From the development presented above, the following problem is formulated.

Problem 4.1 Determine the gains L(ᾱk, ˆ̄βk) andM(ᾱk, ˆ̄βk) of the virtual sensor
(4.5) and the virtual actuator (4.24), respectively, for the faulty TS fuzzy system
(4.3) with unmeasured premise variables and with unknown input disturbances
that stabilize the proposed reconfiguration block with guaranteed H∞ performance.

4.3 takagi-sugeno fuzzy virtual sensor and actuator

In the following, it is presented the main contributions in this chapter, which
is concerned to the design of a virtual sensor and a virtual actuator based on
Unknown Input Observers for TS fuzzy systems with unmeasured premise vari-
ables.
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4.3.1 Virtual Sensor

Theorem 4.1 Consider the faulty Takagi-Sugeno fuzzy system in (4.3). The
virtual sensor (4.5) with gain L(ᾱk, ˆ̄βk) asymptotically stabilizes the estimation
error system (4.19) if there exist symmetric positive definite matrices Pij ∈ Rn×n,
matrices Gij ∈ Rn×n, Uij ∈ Rn×p, Ȳij ∈ Rn×nN4, Z̄ij ∈ Rn×mN4, and scalar
µij > 0, i = 1, . . . ,N3, j = 1, . . . ,N4, such that the following LMIs are feasible:



Prs −Gij −GTij ? ? ?

ATijT
TGTij −CTUTij −Pij + µijκ

2HTH ? ?

ÃTi T
TGTij + Ȳ Tij 0 −µijI ?

B̃T
i T

TGTij + Z̄Tij 0 0 −µijI


< 0, (4.28)

Ãi = [Ai1 . . . AiN4 ], B̃i = [Bi1 . . . BiN4 ],
Ỹij = [Yij . . . Yij ], Z̃ij = [Zij . . . Zij ],

∀i,r = 1, . . . ,N3, ∀j,s = 1, . . . ,N4, with Z̃ij ∈ Rn×mN4, Ỹij ∈ Rn×nN4, Ỹij =

G−1
ij Ȳij and Z̃ij = G−1

ij Z̄ij. Moreover, the Takagi-Sugeno fuzzy virtual sensor
gain in (4.6) is given by:

Lij = G−1
ij Uij . (4.29)

Proof. Consider the Lyapunov candidate function:

V (ek) = eTk P (ᾱk, ˆ̄βk)ek, (4.30)

with P (ᾱk, ˆ̄βk) =
∑N3
i=1

∑N4
j=1 ᾱi(z̄α,k)β̄j( ˆ̄zβ,k)Pij . If (4.28) is feasible, then we

have ensured the regularity of Gij , this last one thanks to the positivity of
Prs, with P (ᾱk+1, ˆ̄βk+1) =

∑N3
r=1

∑N4
s=1 ᾱr(z̄α,k+1)β̄s( ˆ̄zβ,k+1)Prs. Now, define

Uij = GijLij , Ȳij = GijỸij and Z̄ij = GijZ̃ij , and use in (4.28) the fact that
GijP

−1
ij G

T
ij ≥ Gij +GTij − Pij , in order to obtain:



−GijP−1
rs G

T
ij ? ? ?

ATδijG
T
ij −Pij + µijκ

2HTH ? ?

ĀTijG
T
ij 0 −µijI ?

B̄T
ijG

T
ij 0 0 −µijI


< 0, (4.31)
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with Āij = TÃi+ Ỹij , B̄ij = TB̃i+ Z̃ij and Aδij = TAij −LijC. The inequality
(4.31) is pre- and post-multiplied by diag

{
G−1
ij ,I,I,I

}
and its transpose, respec-

tively, and the resulting inequality is multiplied by ᾱi (z̄α,k) and β̄j ( ˆ̄zβ,k) and
summing it up for all i = 1, . . . ,N3 and j = 1, . . . ,N4, results in:

−P−1
rs ? ? ?

Aδ(ᾱk, ˆ̄βk)T −P (ᾱk, ˆ̄βk) + µ(ᾱk, ˆ̄βk)κ2HTH ? ?

RA(ᾱk, ˆ̄βk)T 0 −µ(ᾱk, ˆ̄βk)I ?

RB(ᾱk, ˆ̄βk)T 0 0 −µ(ᾱk, ˆ̄βk)I


< 0,

(4.32)
with RA(ᾱk, ˆ̄βk) and RB(ᾱk, ˆ̄βk) given in (4.17).

Then, pre- and post-multiplying the inequality (4.32) by diag {Prs,I,I,I} and
its transpose, respectively, and multiplying the resulting inequality by ᾱr(z̄α,k+1)

and β̄s( ˆ̄zβ,k+1) and summing it up for all r = 1, . . . ,N3 and s = 1, . . . ,N4, yields:


−P (ᾱk+1, ˆ̄βk+1) ? ?

Aδ(ᾱk, ˆ̄βk)TP (ᾱk+1, ˆ̄βk+1) −P (ᾱk, ˆ̄βk) + µ(ᾱk, ˆ̄βk)κ2HTH ?

R̄(ᾱk, ˆ̄βk)TP (ᾱk+1, ˆ̄βk+1) 0 −µ(ᾱk, ˆ̄βk)I

 < 0,

(4.33)
with R̄(ᾱk, ˆ̄βk) =

[
RA(ᾱk, ˆ̄βk) RB(ᾱk, ˆ̄βk)

]
. Applying the Schur complement to

eliminate the last diagonal term of (4.33), one obtains:
 −P (ᾱk+1, ˆ̄βk+1) + Φ1 ?

Aδ(ᾱk, ˆ̄βk)TP (ᾱk+1, ˆ̄βk+1) −P (ᾱk, ˆ̄βk) + µ(ᾱk, ˆ̄βk)κ2HTH

 < 0, (4.34)

with Φ1 = µ(ᾱk, ˆ̄βk)−1P (ᾱk+1, ˆ̄βk+1)R̄(ᾱk, ˆ̄βk)R̄(ᾱk, ˆ̄βk)TP (ᾱk+1, ˆ̄βk+1). Using
(4.23), inequality (4.34) can be given by:
 −P (ᾱk+1, ˆ̄βk+1) ?

Aδ(ᾱk, ˆ̄βk)TP (ᾱk+1, ˆ̄βk+1) −P (ᾱk, ˆ̄βk)

+ µ(ᾱk, ˆ̄βk)ΦT
2 Φ2 + µ(ᾱk, ˆ̄βk)−1ΦT

3 Φ3 < 0,

(4.35)
with Φ2 = [0 ∆̄H ] and Φ3 =

[
R̄(ᾱk, ˆ̄βk)TP (ᾱk, ˆ̄βk) 0

]
. Thus, considering

Lemma 2.2 and (4.35), it is possible to obtain:
 −P (ᾱk+1, ˆ̄βk+1) ?(

Aδ(ᾱk, ˆ̄βk) + R̄(ᾱk, ˆ̄βk)∆̄H
)T
P (ᾱk+1, ˆ̄βk+1) −P (ᾱk, ˆ̄βk)

 < 0. (4.36)
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Thereby, (4.36) is pre- and post-multiplied by diag
{
P (ᾱk+1, ˆ̄βk+1)

−1,I
}
and its

transpose, respectively, Schur complement is applied to the first diagonal term,
and the resulting inequality is multiplied on the left and right by eTk and ek,
respectively, yielding:

eTk χek < 0, (4.37)

with:

χ =
(
Aδ(ᾱk, ˆ̄βk) + R̄(ᾱk, ˆ̄βk)∆̄H

)T
P (ᾱk+1, ˆ̄βk+1)

(
Aδ(ᾱk, ˆ̄βk) + R̄(ᾱk, ˆ̄βk)∆̄H

)
− P (ᾱk, ˆ̄βk).

(4.38)

Then, (4.37) can be described as:

eTk+1P (ᾱk+1, ˆ̄βk+1)ek+1 − eTk P (ᾱk, ˆ̄βk)ek < 0, (4.39)

and consequently,
V (ek+1)− V (ek) < 0. (4.40)

Since P (ᾱk, ˆ̄βk) > 0,

0 < λmin(P (ᾱk, ˆ̄βk))eTk ek ≤ V (ek) ≤ λmax(P (ᾱk, ˆ̄βk))eTk ek, (4.41)

where λmin(·) and λmax(·) are the minimum and maximum eigenvalues of the
argument, respectively. Therefore, since (4.37) implies that the difference (4.40)
is upper bounded by a negative definite function, V (ek) is a Lyapunov function
and the gain L(ᾱk, ˆ̄βk) designed by Theorem 4.1 asymptotically stabilizes the
estimation error system (4.19). This concludes the proof. �

4.3.2 Virtual Actuator

Theorem 4.2 Consider the faulty Takagi-Sugeno fuzzy system (4.3). The vir-
tual actuator (4.24) with gain M(ᾱk, ˆ̄βk) stabilizes the difference system (4.26)
with a guaranteed H∞ performance η1 of x∆,k with respect to wk if there exist sym-
metric positive definite matrices Q̃ij ∈ Rn×n, matrices G̃ij ∈ Rn×n, Xij ∈ Rm×n,
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Zij ∈ Rm×m, i = 1, . . . ,N3, j = 1, . . . ,N4, and a scalar η1 > 0, such that the
following LMIs are feasible:


Q̃rs − TBijXrs −XT
rsB

T
ijT

T ? ? ? ?

0 I ? ? ?

G̃TijA
T
ijT

T G̃Tij G̃ij + G̃Tij − Q̃ij ? ?

I 0 0 η̄1I ?

−Xrs + ZTrsB
T
ijT

T 0 −Yij 0 Zrs + ZTrs


> 0,

(4.42)
∀i,r = 1, . . . ,N3, ∀j,s = 1, . . . ,N4 and with η1 =

√
η̄1. Moreover, the Takagi-

Sugeno fuzzy virtual actuator gain in (4.25) is given by:

Mij = YijG̃
−1
ij . (4.43)

Proof. Consider:
Ṽ (x∆,k) = xT∆,kP̃ (ᾱk, ˆ̄βk)x∆,k, (4.44)

as a Lyapunov candidate function for the difference state (4.26) with P̃ (ᾱk, ˆ̄βk) =∑N3
i=1

∑N4
j=1 ᾱi(z̄α,k)β̄j( ˆ̄zβ,k)P̃ij with P̃ij = Q̃−1

ij . Furthermore, P̃ (ᾱk+1, ˆ̄βk+1) =∑N3
r=1

∑N4
s=1 ᾱr(z̄α,k+1)β̄s( ˆ̄zβ,k+1)P̃rs.

Notice that Q̃ij , G̃ij and Zij are nonsingular. Defining Yij = MijG̃ij in (4.42)
and using the fact that G̃ijQ̃−1

ij G̃
T
ij ≥ G̃ij + G̃Tij − Q̃ij , it is possible to obtain:



Q̃rs − TBijXrs −XT
rsB

T
ijT

T ? ? ? ?

0 I ? ? ?

G̃TijA
T
ijT

T G̃Tij G̃TijQ̃
−1
ij G̃ij ? ?

I 0 0 η̄2I ?

−Xrs + ZTrsB
T
ijT

T 0 −MijG̃ij 0 Zrs + ZTrs


> 0. (4.45)
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The inequality (4.45) is pre- and post-multiplied by diag{I,I,G̃−Tij ,I,I} and its
transpose, respectively, resulting in:



Q̃rs − TBijXrs −XT
rsB

T
ijT

T ? ? ? ?

0 I ? ? ?

ATijT
T I Q̃−1

ij ? ?

I 0 0 η̄1I ?

−Xrs + ZTrsB
T
ijT

T 0 −Mij 0 Zrs + ZTrs


> 0. (4.46)

In inequality (4.46), define P̃ij = Q̃−1
ij , Wij = Z−Tij and Fij = P̃ijX

T
ijWij , and

one gets:


ϕ1 ? ? ? ?

0 I ? ? ?

ATijT
T I P̃ij ? ?

I 0 0 η̄1I ?

−W−Trs F TrsP̃
−1
rs +W−1

rs B
T
ijT

T 0 −Mij 0 W−Trs +W−1
rs


>0, (4.47)

with ϕ1 = P̃−1
rs − TBijW−Trs F TrsP̃

−1
rs − P̃−1

rs FrsW
−1
rs B

T
ijT

T . Then, (4.47) is multi-
plied on the left by:

E1 =



0 0 0 0 Wrs

0 I 0 0 0
0 0 I 0 0
0 0 0 I 0
P̃rs 0 0 0 Frs


, (4.48)

and on the right by its transpose, respectively, yielding:


Wrs +W T
rs ? ? ? ?

0 I ? ? ?

−MT
ijW

T
rs I P̃ij ? ?

0 0 0 η̄1I ?

P̃rsTBij + Frs 0 P̃rsTAij − FrsMij P̃rs P̃rs


> 0. (4.49)
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Thereafter, multiply the inequality (4.49) by ᾱi(z̄α,k), β̄j( ˆ̄zβ,k), ᾱr(z̄α,k+1) and
β̄s( ˆ̄zβ,k+1) and summing it up for all i,r = 1, . . . , N3 and j,s = 1, . . . ,N4, results
in: 

ϕ2 ? ? ? ?

0 I ? ? ?

ϕ3 I P̃ (ᾱk, ˆ̄βk) ? ?

0 0 0 η̄1I ?

ϕ4 0 ϕ5 P̃ (ᾱk+1, ˆ̄βk+1) P̃ (ᾱk+1, ˆ̄βk+1)


> 0. (4.50)

ϕ2 = W (ᾱk+1, ˆ̄βk+1) +W (ᾱk+1, ˆ̄βk+1)
T , ϕ3 = −M(ᾱk, ˆ̄βk)TW (ᾱk+1, ˆ̄βk+1)

T ,
ϕ4 = P̃ (ᾱk+1, ˆ̄βk+1)TB(ᾱk, ˆ̄βk) + F (ᾱk+1, ˆ̄βk+1),
ϕ5 = P̃ (ᾱk+1, ˆ̄βk+1)TA(ᾱk, ˆ̄βk)− F (ᾱk+1, ˆ̄βk+1)M(ᾱk, ˆ̄βk).

Then, pre- and post-multiplying (4.50) on the left by:

E2 =



0 0 0 0 P̃ (ᾱk+1, ˆ̄βk+1)
−1

0 I 0 0 0
M(ᾱk, ˆ̄βk)T 0 I 0 0

0 0 0 I 0


, (4.51)

and on the right by its transpose, respectively, one gets:

Q̃(ᾱk+1, ˆ̄βk+1) ? ? ?

0 I ? ?

Aζ(ᾱk, ˆ̄βk)T I Q̃(ᾱk, ˆ̄βk)−1 ?

I 0 0 η̄1I


< 0, (4.52)

with Aζ(ᾱk, ˆ̄βk) = TA(ᾱk, ˆ̄βk) + TB(ᾱk, ˆ̄βk)M(ᾱk, ˆ̄βk).
Replacing η1 =

√
η̄1 in (4.52), and pre- and post-multiplying the resulting

inequality by diag
{
P̃ (ᾱk+1, ˆ̄βk+1),I,I,I

}
and its transpose, respectively, yields:



P̃ (ᾱk+1, ˆ̄βk+1) ? ? ?

0 I ? ?

Aζ(ᾱk, ˆ̄βk)T P̃ (ᾱk+1, ˆ̄βk+1) I P̃ (ᾱk, ˆ̄βk) ?

P̃ (ᾱk+1, ˆ̄βk+1) 0 0 η2
1I


> 0. (4.53)



4.3 takagi-sugeno fuzzy virtual sensor and actuator 65

Consider x∆,k+1 = Aζ(ᾱk, ˆ̄βk)x∆,k + wk and use a Schur complement argument
in (4.53), resulting in:

 ϕ6 ?

P̃ (ᾱk+1, ˆ̄βk+1)Aζ(ᾱk, ˆ̄βk) P̃ (ᾱk+1, ˆ̄βk+1)− η2
1I

 < 0, (4.54)

with ϕ6 = Aζ(ᾱk, ˆ̄βk)T P̃ (ᾱk+1, ˆ̄βk+1)Aζ(ᾱk, ˆ̄βk)− P̃ (ᾱk, ˆ̄βk) + I.
Pre- and post-multiplying the inequality (4.54) by

[
xT∆,k w

T
k

]
and its transpose,

respectively, one obtains:

xT∆k+1P̃ (ᾱk+1, ˆ̄βk+1)x∆,k+1 − xT∆,kP̃ (ᾱk, ˆ̄βk)x∆k + xT∆,kx∆,k − η2
1w

T
k wk ≤ 0.

(4.55)

After this, using (4.44) and wk = −L(ᾱk, ˆ̄βk)Cek + TB(ᾱk, ˆ̄βk) (uc,k − f̄a,k − sk)
in (4.55), yields:

Ṽ (x∆,k+1)− Ṽ (x∆,k) + ‖x∆,k‖2 − η2
1‖wk‖2 ≤ 0. (4.56)

Then, based on the Bounded Real Lemma, and considering zero initial condi-
tions, Ṽ (x∆,k) > 0 is a Lyapunov function and the H∞ criterion for the difference
system (4.26) is given by:

sup
‖wk‖2 6=0

‖x∆,k‖2
‖wk‖2

≤ η1, (4.57)

with wk ∈ `n2 and x∆,k ∈ `n2 . This concludes de proof. �

4.3.3 Combination of the virtual sensor with the virtual actuator

From equations (4.19) and (4.26), the interconnection system of the TS fuzzy
virtual sensor with the virtual actuator is given by: ek+1

x∆,k+1

 =

Aδ(ᾱk, ˆ̄βk) + R̄(ᾱk, ˆ̄βk)∆̄T 0
−L(ᾱk, ˆ̄βk)C Aζ(ᾱk, ˆ̄βk)


 ek

x∆,k


+

 0
TB(ᾱk, ˆ̄βk)

 (uc,k − f̄a,k − sk) ,

(4.58)
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with Aζ(ᾱk, ˆ̄βk) = TA(ᾱk, ˆ̄βk) + TB(ᾱk, ˆ̄βk)M(ᾱk, ˆ̄βk). Thus, the stability with
H∞ performance of the system (4.58) can be verified through the following
lemma.

Lemma 4.1 If the virtual sensor gain L(ᾱk, ˆ̄βk) of the error system (4.19) and
the virtual actuator gain M(ᾱk, ˆ̄βk) of the difference system (4.26) are designed
by the conditions of theorems 4.1 and 4.2, then the interconnection given in (4.58)
is also stable with guaranteed H∞ performance η2 computed by η2 = η1c2, with:

c2 = max
1≤i≤N3
1≤j≤N4

‖TBij‖. (4.59)

Proof. Consider:
V̄ (ek,x∆,k) = ξV (ek) + Ṽ (x∆,k) (4.60)

as a Lyapunov candidate function with ξ > 0 for the interconnection, V (ek)
given by (4.30) and Ṽ (x∆,k) by (4.44). Then,

V̄ (ek+1,x∆,k+1)− V̄ (ek,x∆,k) = ξV (ek+1)− ξV (ek) + Ṽ (x∆,k+1)− Ṽ (x∆,k).
(4.61)

Considering (4.37), (4.38) and (4.40), it follows that:

V (ek+1)− V (ek) = eTk χek ≤ −ν‖ek‖2 < 0, (4.62)

where −ν = λmax (χ) is negative definite and is the maximum eigenvalue of χ.
From (4.56) and (4.62), with wk = −L(ᾱk, ˆ̄βk)Cek + TB(ᾱk, ˆ̄βk)ũk and ũk =

uc,k − f̄a,k − sk, (4.61) can be described as:

V̄ (ek+1,x∆,k+1)− V̄ (ek,x∆,k) ≤− ξν‖ek‖2 − ‖x∆,k‖2 + η2
1c

2
1‖ek‖2 + η2

1c
2
2‖ũk‖2,

(4.63)

with c1 = max
1≤i≤N3
1≤j≤N4

‖LijC‖ and c2 given in (4.59), which yields:

V̄ (ek+1,x∆,k+1)− V̄ (ek,x∆,k) ≤
(
η2

1c
2
1 − ξν

)
‖ek‖2 − ‖x∆,k‖2 + η2

1c
2
2‖ũk‖2.

(4.64)
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Defining ξ = 1 + η2
1c

2
1

ν , (4.64) results in:

V̄ (ek+1,x∆,k+1)− V̄ (ek,x∆,k) ≤ −‖ek‖2 − ‖x∆,k‖2 + η2
1c

2
2‖ũk‖2

≤ −
∥∥∥∥∥
[
eTk xT∆,k

]T ∥∥∥∥∥
2
+ η2

2‖ũk‖2,
(4.65)

with η2 = η1c2. Thus, the interconnection (4.58) is stable with guaranteed H∞
performance η2 for the virtual sensor gain L(ᾱk, ˆ̄βk) and virtual actuator gain
M(ᾱk, ˆ̄βk) designed by the conditions of theorems 4.1 and 4.2, respectively. This
concludes the proof. �

Remark 4.5 It is important to note that if it is possible to design the virtual ac-
tuator signal sk so that η2

2‖ũk‖2 is null, the interconnection will be asymptotically
stable.

Theorem 4.3 Consider the faulty Takagi-Sugeno fuzzy model (4.3) and assume
that the nominal closed-loop system is composed of the nominal system (4.1)
and the designed nominal controller characterized in Remark 2.1. If there exist
virtual sensor gains as in (4.29) and virtual actuator gains as in (4.43) such
that the conditions (4.28) and (4.42) are satisfied, then the controller design is
independent of the virtual sensor and actuator designs through theorems 4.1 and
4.2, respectively.

Proof. Consider the Remark 4.3 and a generic nominal controller given by:

ΣC =

 xc,k+1 = Ac(ᾱk, ˆ̄βk)xc,k +Bc(ᾱk, ˆ̄βk)yc,k +Ec(ᾱk, ˆ̄βk)rk,
uc,k = Cc(ᾱk, ˆ̄βk)xc,k +Dc(ᾱk, ˆ̄βk)yc,k + Fc(ᾱk, ˆ̄βk)rk,

(4.66)

where xc,k is the internal state of the controller, yc,k is given in (4.24) and uc,k is
the control sequence computed by the controller. Matrices Ac(ᾱk, ˆ̄βk), Bc(ᾱk, ˆ̄βk),
Ec(ᾱk, ˆ̄βk), Cc(ᾱk, ˆ̄βk), Dc(ᾱk, ˆ̄βk) and Fc(ᾱk, ˆ̄βk) have appropriate dimensions
and are determined according to the design of the controller.
Then, the reconfigured closed-loop system consists of the faulty system (4.3),

the virtual sensor (4.5), the virtual actuator (4.24) and the nominal controller
(4.66). With ek = xf ,k− x̂f ,k and x∆,k = x̃k− x̂f ,k, its dynamics can be given by
the estimation error dynamics (4.19), together with the dynamics of the difference
state (4.26), the controller (4.66) and the virtual actuator (4.24). It is important
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to notice that the nominal controller does not interact directly with the faulty
system (4.3), but with the nominal system given by the virtual actuator equations
(4.24). The faulty system state (xf ,k) is included in the estimation error dynamics
(4.19), and consequently, in the difference state dynamics (4.26).

The first part of this proof consists in demonstrating that the dynamics of the
reference state of the virtual actuator (4.24) can be seen as the dynamics of the
nominal system (4.1).
Consider:

x̃k+1 = A(ᾱk, ˆ̄βk)x̃k +B(ᾱk, ˆ̄βk)uc,k, (4.67)

which can be written as:

x̃k+1 , (T +NC)
[
A(ᾱk, ˆ̄βk)x̃k +B(ᾱk, ˆ̄βk)uc,k

]
, TA(ᾱk, ˆ̄βk)x̃k + TB(ᾱk, ˆ̄βk)uc,k +NC

(
A(ᾱk, ˆ̄βk)x̃k +B(ᾱk, ˆ̄βk)uc,k

)
, TA(ᾱk, ˆ̄βk)x̃k + TB(ᾱk, ˆ̄βk)uc,k +NCx̃k+1,

(4.68)

with (T +NC) = I, as given in (4.7).
As the dynamics of the reference state x̃k of the virtual actuator is presented

in (4.24), it must be similar to the one given in (4.68). For this, it is necessary
to verify that NCx̃k+1 = NCxf ,k+1, with:

NCx̃k+1 = NCT
(
A(ᾱk, ˆ̄βk)x̃k +B(ᾱk, ˆ̄βk)uc,k

)
+NCNCxf ,k+1. (4.69)

Then, it is necessary that the following equations are proven:

NCT = 0
NCNC = NC.

(4.70)

Since N is calculated as shown in (4.8), it follows that:

NCNC = D
(
DTCTCD

)−1
DTCTCD

(
DTCTCD

)−1
DTCTC

= D
(
DTCTCD

)−1
DTCTC = NC.

(4.71)
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From (4.71), it is possible to demonstrate that:

NC (T +NC) = NC

NCT +NCNC = NC

NCT = 0.

(4.72)

As the equations in (4.70) are satisfied, it can be ensured that NCx̃k+1 =

NCxf ,k+1 and that the reference state dynamics in (4.24), (4.67) and (4.68)
are equivalent. Furthermore, the dynamics of the virtual actuator that directly
interacts with the designed controller can be written as (4.67).
The second part of the proof is to demonstrate that the controller design is

independent of the reconfiguration block design, considering the Remark 4.3 and
a generic controller given in (4.66). Writing a closed-loop system composed of
(4.19), (4.26), (4.66) and (4.67), one obtains:



x∆,k+1

ek+1

x̃k+1

xc,k+1


=



Aζ(ᾱk, ˆ̄βk) −L(ᾱk, ˆ̄βk)C Bζ1(ᾱk, ˆ̄βk) Bζ2(ᾱk, ˆ̄βk)

0 Āδ(ᾱk, ˆ̄βk) 0 0
0 0 Aσ(ᾱk, ˆ̄βk) Bσ(ᾱk, ˆ̄βk)

0 0 Bc(ᾱk, ˆ̄βk)C Ac(ᾱk, ˆ̄βk)





x∆,k

ek

x̃k

xc,k



+



−TB(ᾱk, ˆ̄βk)

0
0
0


(f̄a,k + sk) +



TB(ᾱk, ˆ̄βk)Fc(ᾱk, ˆ̄βk)

0
B(ᾱk, ˆ̄βk)Fc(ᾱk, ˆ̄βk)

Ec(ᾱk, ˆ̄βk)


rk,

(4.73)

with:

Aζ(ᾱk, ˆ̄βk) = TA(ᾱk, ˆ̄βk) + TB(ᾱk, ˆ̄βk)M(ᾱk, ˆ̄βk),
Bζ1(ᾱk, ˆ̄βk) = TB(ᾱk, ˆ̄βk)Dc(ᾱk, ˆ̄βk)C,
Bζ2(ᾱk, ˆ̄βk) = TB(ᾱk, ˆ̄βk)Cc(ᾱk, ˆ̄βk),
Āδ(ᾱk, ˆ̄βk) = Aδ(ᾱk, ˆ̄βk) + R̄(ᾱk, ˆ̄βk)∆̄H,
Aσ(ᾱk, ˆ̄βk) = A(ᾱk, ˆ̄βk) +B(ᾱk, ˆ̄βk)Dc(ᾱk, ˆ̄βk)C,
Bσ(ᾱk, ˆ̄βk) = B(ᾱk, ˆ̄βk)Cc(ᾱk, ˆ̄βk).

The dynamics matrix consists of two blocks, an upper one composed by the
dynamics of the difference state and the estimation error and one at the bottom
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composed by the dynamics of the nominal system and the controller. As can
be seen, the block at the bottom is not affected by the dynamics of the upper
block. Therefore, the design of the reconfiguration block can be carried out
independently of the nominal system and the controller. On the other hand, the
design of the controller is also carried out independently of the virtual sensor
and the virtual actuator and should take into account only the dynamics of the
nominal system. This concludes the proof. �

From the problem formulation and theorems 4.1 and 4.2, it is possible to notice
the main differences compared to the approach proposed in Chapter 3. One of
them is that sensor and actuator faults are described in an additive way, while
in the LPV methodology, they are described as multiplicative. This implies that
the proposed TS fuzzy methodology makes it possible to contemplate a greater
variety of faults, both multiplicative and additive, including total faults in both
sensors and actuators, in addition to describing the system in a simpler way. This
is because the description of faults does not affect the input and output matrices
of the system, unlike the strategy presented in the previous chapter. That is, the
LMI conditions of theorems 4.1 and 4.2 depend only on the nominal matrices of
the system (B and C), while the conditions of theorems 3.1 and 3.2 depend on
the faulty system matrices (Bf and Cf ) and, consequently, on the indications
of sensor and actuator faults which are described as time-varying parameters of
the system. Therefore, it is evident that the same nonlinear system with faults,
described by the LPV model in (3.6) and by the TS fuzzy model in (4.3) will
have a lower number of vertices/rules if modeled as TS fuzzy with additive faults
(4.3), as shown in the following example.

Example 4.1. A nonlinear system with two sensors and two actuators de-
scribed as LPV (3.1) with N = 8 vertices, when subject to faults, includes them
as time-varying parameters in its model (3.6), increasing the number of vertices
to N = 128, as shown in equation (3.5). On the other hand, the same system
described as TS fuzzy (with 8 rules), when subject to faults, continues with the
same number of rules, but with the premise variables rearranged into vectors z̄α,k
and z̄β,k.

Another difference is that the LPV approach proposed in Chapter 3 considers
that time-varying parameters are measured independently of the occurrence of
faults (Assumption 3.1), unlike the methodology proposed in this chapter, which
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is capable of dealing with unmeasured premise variables, even those that become
unmeasured due to the occurrence of sensor faults. Depending on the real-world
application, the requirement to measure the premise variables may be a problem,
since the the measurement of these variables (or time-varying parameters) gen-
erally depends on the reading of the signals provided by sensors. If the sensors
are affected by faults, the measurements used to have the premise variables (or
time-varying parameters) can be compromised as well as the computation of the
gains and states of the reconfiguration block and the controller (when applicable).
Thus, the performance of the system as a whole can deteriorate and stability is
no longer guaranteed. With the use of the proposed methodology, however, it
becomes possible to implement a reconfiguration block capable of maintaining
the stability and performance of the faulty system, even those that have premise
variables affected by faults.

Finally, another significant contribution to the methodology presented in the
previous chapter is the way the disturbance is handled in the reconfiguration
block design. In this chapter, a strategy based on unknown input observer is
proposed, which allows the estimation error of the virtual sensor to be indepen-
dent of the disturbance. On the other hand, the design in the LPV context is
only able to guarantee system stability with respect to the disturbance with an
ISS gain. So, depending on the controller design, using the TS fuzzy approach,
it is possible for the system output to continue tracking the reference with a
performance close to that of the nominal system, while with the LPV strategy, a
tracking error may arise during the disturbed period. Notice that the estimation
error also affects the performance of the virtual actuator and, consequently, of
the reconfiguration block as a whole.
It is important to emphasize that the approaches of [20, 30] propose FTC

strategies for TS fuzzy systems with only actuator faults, the first one only
contemplates multiplicative faults in a single actuator and the last one covers
multiplicative and additive faults, but with different virtual actuator designs that
depend on the type of the fault. The methodology in [15], on the other hand,
is proposed for TS fuzzy continuous-time systems and allows the occurrence of
sensor and actuator faults, as long as they are multiplicative and a reconfiguration
block design must be carried out for each new fault that occurs. Then, the
contribution of the proposed approach is evident, since it includes additive and
multiplicative faults of sensors and actuators, which can be total in both sensors
and/or actuators, and only one reconfiguration block design for different types
and magnitudes of faults is needed. In [29] a virtual sensor based on unknown
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input observer is proposed for LPV systems with additive and multiplicative
faults, but which only contemplates sensor faults and considers that time-varying
parameters are given. Regarding the use of reconfiguration blocks based on
unknown input observer for TS fuzzy systems with unmeasured premise variables
or in the LPV context with unmeasured time-varying parameters and subject to
sensor and actuator faults (additive and multiplicative), similar methodologies
are not found in the current literature.
Algorithm 1 presents to the reader a guide with the steps implementing the

proposed technique when applied to a faulty system. Such algorithm is used
in the next section to implement the proposed approach to control a nonlinear
coupled tank system under both sensor and actuators faults, with unmeasured
premise variables and disturbance.

Algorithm 1 Simplified algorithm for implementing the proposed approach.
1: Determine the unmeasured premise variables (that can be affected by total losses

the sensors).
2: Rearrange the premise variable vectors, separating those that are measured from

those that are unmeasured (z̄α,k and z̄β,k).
3: Determine the value of κ and of the matrix H.
4: Determine the matrices N and T .
5: Determine the matrices Aij , Bij , Ãi, B̃i, for i = 1, . . . ,N3 and j = 1, . . . ,N4.
6: Calculate the gains of the virtual sensor and the virtual actuator using theorems

4.1 and 4.2.
7: Design the signal sk according to the possible actuator faults and such that
‖TB(ᾱk, ˆ̄βk)(uc,k − f̄a,k − sk)‖2 is the minimum possible.

8: Run the control algorithm with the reconfiguration block active for the nominal
conditions (φi,k = 1 and γj,k = 1, for i = 1, . . . ,m and j = 1, . . . ,p).

9: if the FDI module indicates a fault then
10: Update φi,k, γj,k, for i = 1, . . . ,m and j = 1, . . . ,p, and sk.
11: else
12: Run the control algorithm with the reconfiguration block active for the nominal

conditions.
13: end if

4.4 case study - coupled tanks system

In order to evaluate the methodology proposed in this chapter, computer simula-
tions are carried out using the nonlinear model that represents the coupled tank
system presented in Section 2.6. From the equations describing the system’s be-
havior given in (2.13), a translation is done in the dynamics equations so that the
desired equilibrium point becomes the state space’s origin. Thus, the following
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discrete-time TS fuzzy model, with an added disturbance, is obtained by using
Euler method [115]:


δhk+1 =

1 + z1,kz2,k (−1 + r12qio) z1,kz2,k (1− r12qio)

(1− r12qoo)
z2,k
S2

1 + z2,k (−1 + r12qoo)− gTs
S2

 δhk

+

TsKb1z1,k TsKb2z1,k

0 0

 δuk +
0
1

 dk,

δyk =

1 0
0 1

 δhk,
(4.74)

where δhk = [δh1,k δh2,k]
T = [h1,k − h1o h2,k − h2o]

T , with h1o = 0.5798 m
and h2o = 0.3112 m being the state equilibrium values, δuk = [δu1,k δu2,k]

T =

[u1,k − u1o u2,k − u2o]
T , with u1o = 0.2330 and u2o = 0.2330 being the input

equilibrium values, Kb1 = 15.5980× 10−4 and Kb2 = 12.2010× 10−4 the static
gains of the pumps, qio = qi1o + qi2o, with qi1o = Kb1u1o + 270.3400 × 10−6

m3/s and qi2o = Kb2u2o + 272.5260× 10−6 m3/s the equilibrium values of the
input flows, g = 12.9410× 10−4 and qoo = gh2o + 787.5860× 10−6 m3/s being
the equilibrium value of the output flow. In addition, z1,k = 1/S1(h1,k) and
z2,k = Ts/R12(h1,k,h2,k) are the measured premise variables grouped in the
vector zα,k = [z1,k z2,k]

T , with R12(h1,k,h2,k) = r12 (h1,k − h2,k) + 114.8800
and r12 = 412. Once again, the sampling time Ts = 2 seconds is chosen so that
the fastest time constant of the system stays between 7 and 8 samples [114]. For
more details, see Section 2.6.
Considering that 0.48 ≤ h1,k ≤ 0.68 m and 0.165 ≤ h1,k − h2,k ≤ 0.5 m, the

minimum and maximum values of the premises variables are obtained, and given
by:

a1 = max
h1,k

z1,k = 48.1534; a2 = min
h1,k

z1,k = 6.4234;

b1 = max
h1,k,h2,k

z2,k = 109.3733× 10−4; b2 = min
h1,k,h2,k

z2,k = 62.3286× 10−4.

(4.75)
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Using the sector nonlinearity approach, the premise variables can be written
as z1,k =

∑2
i=1 ψ1i (z1,k) ai and z2,k =

∑2
j=1 ψ2j (z2,k) bj , with:

ψ11(z1,k) =
z1,k − a2
a1 − a2

, ψ12(z1,k) =
a1 − z1,k
a1 − a2

,

ψ21(z2,k) =
z2,k − b2
b1 − b2 , ψ22(z2,k) =

b1 − z2,k
b1 − b2 ,

(4.76)

and the membership functions α` (zα,k) given in (4.1) are computed as:

α` (zα,k) = ψ1i (z1,k)ψ2j (z2,k) , (4.77)

where ` = 2(i− 1) + j, for ` = 1, . . . , 4 and i, j = 1, 2.
Thus, combining the maximum and minimum values given in (4.75), a TS

fuzzy model as presented in (4.1), with N1 = 4 and N2 = 0 rules, is used to
describe the nonlinear system (4.74), with the following matrices:

A1 =

0.7317 0.2683
0.0185 0.9730

 ; A2 =

0.8471 0.1529
0.0105 0.9809

 ; C =

1 0
0 1

 ;

A3 =

0.9642 0.0358
0.0185 0.9730

 ; A4 =

0.9796 0.0204
0.0105 0.9809

 ; D =

0
1

 ;

B1 = B2 =

0.1502 0.1175
0 0

 ; B3 = B4 =

0.0200 0.0157
0 0

 .

(4.78)

4.4.1 Controller Design

The nominal TS fuzzy controller is designed according to the methodology pre-
sented in Section 2.6.1, where Ai and Bi are given in (4.78) and with Ñ = N1 in
(2.15). The obtained gains are presented in Section B.1.

4.4.2 Reconfiguration Block Design

As sensor and actuator faults are modeled as faults added to the system dynam-
ics and output equations, the structure of the input and output matrices are not
modified as in the methodology proposed in Chapter 3. Therefore, the virtual
sensor and the virtual actuator are designed using the same matrices as the nom-
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inal system (4.1), with some adjustments related to the dependence of premise
variables that become unmeasured due to faults.

According to the description of the faulty system, total faults in both sensors
are considered in the proposed approach. Then, it is pertinent to assume that the
measurements from the two level sensors that provide the values of h1,k and h2,k
may be corrupted. Consequently, as the premise variables z1,k and z2,k depend
on these measurements, their values can be affected by sensor faults and are
considered unmeasured (step 1 of Algorithm 1). Thus, the faulty system becomes
dependent only on unmeasured premise variables, organized in the vector z̄β,k =[
z̄β1,k z̄β2,k

]T
, as defined in (4.3), and with a change of variables, z̄β1,k = h1,k

and z̄β2,k = h1,k − h2,k (step 2 of Algorithm 1). From this, it follows that:

z1,k =
1

S1(z̄β1,k)
, z2,k =

Ts
r12z̄β2,k + 114.88, (4.79)

with S1(z̄β1,k) given in (2.14), and the membership functions ψ1i and ψ2j , i,j =
1,2, concerned with the unmeasured premise variables in (4.76), can be rewritten
as:

ψ11(z̄β1,k) =

1
S1(z̄β1,k)

− a2

a1 − a2
, ψ21(z̄β2,k) =

Ts
r12z̄β2,k + 114.88 − b2

b1 − b2 ,

ψ12(z̄β1,k) =

a1 −
1

S1(z̄β1,k)
a1 − a2

, ψ22(z̄β2,k) =

b1 −
Ts

r12z̄β2,k + 114.88
b1 − b2 .

(4.80)

The membership functions of the faulty model (4.3) are given by:

β̄`(z̄β,k) = ψ1i(z̄β1,k)ψ2j (z̄β2,k), (4.81)

where ` = 2(i− 1) + j, for ` = 1, . . . ,N4 and i,j = 1,2, with N4 = 4 and ψ1i and
ψ2j given in (4.80).
According to step 3 of Algorithm 1, in order to use the conditions of Theorem

4.1 to determine the virtual sensor gains, it is necessary to define the value of κ
and of the matrix H so that ez,k = Hek. Considering Assumption 4.2, for this
case study, the levels of tanks T3 and T4 can vary up to 0.2 m and 0.14 m around
the equilibrium point, respectively, and the control signal ūk = uf ,k + f̄a,k can
vary up to 0.23 around the operation point, leading to κxf = 0.2202, κū = 0.3253,
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κβ1 = 2.2709, κβ2 = 2.2709, κβ3 = 3.1590 and κβ4 = 3.1229, resulting in
κ = 2.1532. The matrix H is given by:

H =

1 0
1 −1

 , (4.82)

since h1,k and h2,k are not measured.
Following step 4 of Algorithm 1, matrix N is designed according to equation

(4.8) and then matrix T is calculated using the first equation of (4.7), obtaining:

N =

0 0
0 1

 , T =

1 0
0 0

 . (4.83)

Thus, applying steps 5 and 6 of Algorithm 1, the virtual sensor can be designed
according to the information presented above and, using Theorem 4.1 and the
solver MOSEK® [116], the gains Lj , for j = 1, . . . ,N4, given in (4.29) are cal-
culated and presented in Section B.2. Also using the solver MOSEK® [116],
the virtual actuator is designed using Theorem 4.2 and the gains Mj , for j =

1, . . . ,N4, in (4.43) are calculated for the minimum guaranteed H∞ performance
η1 = 2.5140 and shown in Section B.3. Moreover, following step 7 of Algorithm
1, the signal sk in (4.24) is designed such that ‖TB(ᾱk, ˆ̄βk) (uc,k − f̄a,k − sk) ‖2 is
the minimum possible and is calculated according to the type of actuator faults,
during the execution of the control algorithm. For cases of multiplicative partial
faults and/or additive faults in one or both actuators, sk is given by:

sk =


1
φ1,k

0

0 1
φ2,k

 (uc,k − f̄a,k) . (4.84)

On the other hand, when there is a total fault in one of the actuators, the
equivalent control signal must be routed to the remaining actuator. For total
fault of the first pump, one gets:

sk =
1
φ2,k

 0 0
Kb1
Kb2

1

 (uc,k − f̄a,k) , (4.85)
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and for total fault of the second pump:

sk =
1
φ1,k

1 Kb2
Kb1

0 0

 (uc,k − f̄a,k) . (4.86)

Note that to implement the reconfiguration block, the control signals applied
to the system must take into account the equilibrium input values compensated
according to the faults.

Remark 4.6 Using the signal sk given in (4.84), (4.85) and (4.86) for each type
of fault, it is possible to observe that in all cases TB(ᾱk, ˆ̄βk)(uc,k − f̄a,k − sk) =
0. Thus, the disturbance wk in (4.26) is given by wk = −L(ᾱk, ˆ̄βk)Cek, not
depending on nominal control signal uc,k nor actuator fault f̄a,k.

From this, the computer simulations are performed for different scenarios of
sensor faults, actuator faults, simultaneous sensor and actuator faults and dis-
turbance. In order to verify the performance of the system, its time-responses
are analyzed for the methodology proposed in this chapter, applying steps 8-13
of Algorithm 1, (called UIOFTC , lines in red) and with faults; for the system
with nominal controller, without any FTC strategy and without faults (called
WFTCN , lines in blue); and for the system with the nominal controller, with-
out any FTC strategy and with faults (called WFTC, lines in green). Notice
that, as the nominal controller is designed for the nominal system (4.1), stability
and performance of the closed-loop system with WFTC are not guaranteed in
the presence of faults. In addition, as sensor faults affect the measurement of
the premise variables, the computation of the controller gain, in the case of the
WFTC simulations, is also affected.

Computer simulations are also performed to compare performance with the
approach proposed in Chapter 3 (called RFTC, lines in magenta), considering
that the system parameters are calculated from the measurements of the level
sensors and, therefore, can be affected by sensor faults. The reconfiguration block
composed of a virtual sensor and a virtual actuator is designed for the system
described in (4.74) with matrices (4.78), subject to sensor and actuator faults for
γ1,k ≤ γ1,k ≤ γ1,k, γ2,k ≤ γ2,k ≤ γ2,k, φ1,k ≤ φ1,k ≤ φ1,k and φ2,k ≤ φ2,k ≤ φ2,k,
with γ1,k = 0, γ1,k = 1, γ2,k = 0.1, γ2,k = 1, φ1,k = 0.5, φ1,k = 1, φ2,k = 0
and φ2,k = 1. Therefore, only faults in these ranges are guaranteed by the
design. Also note that additive faults are not covered, as well as total faults
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in both sensors and actuators. The resulting faulty system (3.6) has six time-
varying parameters, resulting in an LPV system with N = 64 vertices, with
appropriately calculated matrices Bf (θk) and Cf (θk), similar to that shown in
(3.65) and (3.66), respectively. Matrix R(θk) is given in (3.67) for total fault of
the first pump, in (3.68) for partial faults and for total fault of the second pump
is given by:

R(θk) = −
1
φ2,k

 0 0
Kb1
Kb2

1

 . (4.87)

From that, the virtual sensor is designed by Theorem 3.1 and using the software
MOSEK® [116], the gains Li given in (3.17), for i = 1, . . . ,N , are found with a
minimum value of σd = 1075.79. Similarly, the virtual actuator is designed by
Theorem 3.2 and the gains Mi in (3.39), for i = 1, . . . ,N , are calculated for the
minimum value of σa = 1464.31. For the sake of space and to keep objectivity,
the values of the gains are omitted in this chapter.
Similar to the previous chapter, the performance of the system is evaluated

quantitatively by means of the performance indices IAE, ISE, IVU1 and IVU2,
which are depicted in graphs. Note that the lower the index, the better the per-
formance. Then, the more interior the graph, the better the system performance.

4.4.3 Sensor Faults

To evaluate the performance of the closed-loop system subject to sensor faults,
computer simulations are performed considering piecewise constant faults fi, with
i = 1, . . . ,5. The first fault occurs for t ≥ 500s, when there is a partial fault of
20% in the second sensor, i.e. (γ1,k = 1, γ2,k = 0.8, fs1,k = 0, fs2,k = 0, fault f1),
and the second after t ≥ 1000s, when there is a partial fault of 50% in first sensor
and the second sensor fails completely, namely (γ1,k = 0.5, γ2,k = 0, fs1,k = 0,
fs2,k = 0, fault f2), as depicted in figures 14 and 15. For t ≥ 2000s, the first
sensor fails completely and a partial fault of 50% occurs in the second sensor, i.e.
(γ1,k = 0, γ2,k = 0.5, fs1,k = 0, fs2,k = 0, fault f3), for t ≥ 3000s, the first sensor
recovers 50% of its efficiency, namely (γ1,k = 0.5, γ2,k = 0.5, fs1,k = 0, fs2,k = 0,
fault f4), and for t ≥ 4000s, additive faults with values of −0.1 m and 0.05 m
occur in the first and second sensor, respectively, i.e. (γ1,k = 0.5, γ2,k = 0.5,
fs1,k = −0.1, fs2,k = 0.05, fault f5). In addition, for 5000 ≤ t < 6000, a
disturbance dk is inserted in tank T4, equivalent to applying a control signal to
the second pump with an amplitude of 0.1.
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The instants of faults fi, i = 1, . . . ,5, are shown in figures 14 and 15 by dashed
gray lines, while their durations are represented by the colored backgrounds.
These faults can be summarized as:

f1 : γ1,k = 1, γ2,k = 0.8, fs1,k = 0, fs2,k = 0, 500 ≤ t < 1000s,
f2 : γ1,k = 0.5, γ2,k = 0, fs1,k = 0, fs2,k = 0, 1000 ≤ t < 2000s,
f3 : γ1,k = 0, γ2,k = 0.5, fs1,k = 0, fs2,k = 0, 2000 ≤ t < 3000s,
f4 : γ1,k = 0.5, γ2,k = 0.5, fs1,k = 0, fs2,k = 0, 3000 ≤ t < 4000s,
f5 : γ1,k = 0.5, γ2,k = 0.5, fs1,k = −0.1, fs2,k = 0.05, t ≥ 4000s.

(4.88)
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Figure 14: Simulations for sensor faults and disturbance for WFTCN , WFTC, and
UIOFTC : Levels h1 and h2 (top) and control signals u1 and u2 (bottom).
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From Figure 14 it is possible to notice that with the occurrence of fault f2,
the system with WFTC has an increase in the control signal and in the level
h1, so that it exceeds 0.7 m and activates the process security system, turning
it off (the simulation is stopped) and preventing the tank T3 from overflowing.
This is because the controller is not designed to compensate fault occurrences
and when the measurement of the levels are incorrect, the system exceeds the
maximum allowed safety limit. On the other hand, with the use of the UIOFTC

strategy, the faults hardly affect the control signal and the real output of the
system. Thus, their time-responses are similar to those obtained with the im-
plementation of WFTCN , when no faults and no FTC strategy are considered.
Furthermore, the disturbance does not affect the reference tracking, due to the
use of the unknown input observer-based approach. From Figure 15, in which
the methodologies RFTC and UIOFTC are compared, it is possible to observe
that after the occurrence of the fault f3, the system using the RFTC strategy
exceeds the maximum level value allowed in the tank T3, activating the secu-
rity system and disabling the operation of the process. Although the fault f3 is
considered in the design of the virtual sensor, it affects the measurements of the
system time-varying parameters, resulting in an inadequate computation of gains
and states of the virtual sensor, virtual actuator and controller, and causing the
system to exceed the maximum security limit. Therefore, the reconfiguration
block UIOFTC proposed in this chapter is able to keep the system response close
to the nominal one and with reference tracking, even in the presence of different
sensor faults (multiplicative and additive), with unmeasured premise variables
and disturbance.
The performance indices of the system are normalized with respect to the

WFTC and presented in Figure 16, in which it can be noticed that the system
performance with UIOFTC is close to that of the nominal system with WFTCN ,
being, in general, significantly better than the system with WFTC. Regarding
the error, the methodology UIOFTC presents better performance than the RFTC,
but the latter has slightly better values of IVU1 and IVU2, since the simulation
was interrupted at the beginning, not showing, for example, the control signal
variations caused by changes in the reference value.

An important detail is that, as the sensor faults affect the measurement of
all the premise variables, the gain calculated by the implemented controller be-
comes inadequate since it depends on its value. However, with the use of the
proposed virtual sensor, the estimates of these premise variables are provided to
the controller, allowing an adequate computation of its gain.
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Figure 15: Simulations for sensor faults and disturbance for UIOFTC and RFTC: Levels
h1 and h2 (top) and control signals u1 and u2 (bottom).

Figure 17 presents the simulation graphs for the system with UIOFTC to vi-
sualize the states of the reconfiguration block (x̂f ,k and x̃k) compared to the
system state (xf ,k) and also the nominal control signal (uc,k) compared to the
reconfigured control signal (uf ,k) applied to the process actuators. As can be
seen, the virtual sensor and virtual actuator states resemble the system state,
even in the presence of different sensor faults, allowing sensor faults to be hidden
from the nominal controller. Similarly, as in this case there are no actuator faults,
uf ,k is practically identical to the control signal uc,k generated by the nominal
controller.
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Figure 16: Performance indices for sensor faults and disturbance normalized with re-
spect to WFTC.

4.4.4 Actuator Faults

Simulations are also performed to verify the performance of the system subject to
piecewise constant actuator faults fi, i = 1, . . . , 5, as depicted in figures 18 and
19. The first fault occurs for t ≥ 500s, when there is a partial fault of 20% in the
first actuator and of 10% in the second actuator, namely (φ1,k = 0.8, φ2,k = 0.9,
fa1,k = 0, fa2,k = 0, fault f1), and the second for t ≥ 1500s, with a total loss of
the first actuator, i.e. (φ1,k = 0, φ2,k = 0.9, fa1,k = 0, fa2,k = 0, fault f2). For
t ≥ 2500s, there is a recovery of 90% of the efficiency of the first pump and a total
loss of the second pump, namely (φ1,k = 0.9, φ2,k = 0, fa1,k = 0, fa2,k = 0, fault
f3), for t ≥ 3500s, the second actuator fully recovers, i.e. (φ1,k = 0.9, φ2,k = 1,
fa1,k = 0, fa2,k = 0, fault f4), and for t ≥ 4500s, additive faults occur with values
of 0.05 and 0.08 in the first and second pump, respectively, namely (φ1,k = 0.9,
φ2,k = 1, fa1,k = 0.05, fa2,k = 0.08, fault f5). A disturbance dk with the same
amplitude and duration as the one in the previous section is also inserted.
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Figure 17: Simulation for sensor faults and disturbance for UIOFTC : System (xf ,k)
and reconfiguration block states (x̂f ,k and x̃k) (top), nominal (uc,k) and
reconfigured control signals (uf ,k) (bottom).

Once again, the faults fi, i = 1, . . . ,5, occur, respectively, at the time instants
represented in figures 18 and 19 by the dashed lines, while their durations are
represented by the colored backgrounds. These faults can be summarizes as:


f1 : φ1,k = 0.8, φ2,k = 0.9, fa1,k = 0, fa2,k = 0, 500 ≤ t < 1500s,
f2 : φ1,k = 0, φ2,k = 0.9, fa1,k = 0, fa2,k = 0, 1500 ≤ t < 2500s,
f3 : φ1,k = 0.9, φ2,k = 0, fa1,k = 0, fa2,k = 0, 2500 ≤ t < 3500s,
f4 : φ1,k = 0.9, φ2,k = 1, fa1,k = 0, fa2,k = 0, 3500 ≤ t < 4500s,
f5 : φ1,k = 0.9, φ2,k = 1, fa1,k = 0.05, fa2,k = 0.08, t ≥ 4500s.

(4.89)
As can be noticed in Figure 18, the system with WFTC is able to continue

tracking the reference even in the presence of different actuator faults. However,
this is not guaranteed, since the controller is designed for the nominal system.
In addition, whenever a fault occurs, the system is disturbed and variations
in the system output are noticed. These variations can be of great amplitude,
such as the one that appears close to the occurrence of the fault f2. Another
observation is that there is the application of control signals in the pumps, even
when they are in total fault. On the other hand, using UIOFTC methodology,
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Figure 18: Simulations for actuator faults and disturbance for WFTCN , WFTC, and
UIOFTC : Levels h1 and h2 (top) and control signals u1 and u2 (bottom).

the reconfiguration block is able to maintain the performance of the system
close to the nominal WFTCN , via adjustments made to its control signal to
compensate the faults and the disturbance. Note that, after the total loss of the
actuators in f2 and f3, the control signal for the pump with total fault becomes
practically null and the remaining actuator becomes responsible for the actuation
of the whole system. The system with RFTC, on the other hand, has a behavior
similar to the UIOFTC up to the time of fault f5, as can be seen in Figure 19.
After that, it no longer follows the reference, due to additive faults that are not
included in its design and the system stability is just guaranteed with respect
to the disturbance with an ISS gain. It is worth noting that, although the total
fault of the first actuator is compensated by the reconfiguration block (thanks to
the use of the matrix R(θk) in (4.87)), there is no guarantee of stability by the
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design, in which only the total fault of the second actuator is ensured. Thus, the
approach proposed in this chapter prove to be adequate and efficient even with
the presence of different types of faults, including total faults on both actuators,
and disturbance.
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Figure 19: Simulations for actuator faults and disturbance for UIOFTC and RFTC:
Levels h1 and h2 (top) and control signals u1 and u2 (bottom).

Figure 20 illustrates the performance indices for the system with the simulated
methodologies, normalized in relation to the WFTC, being evident that the
RFTC approach presents the worst performance in this scenario. Regarding
the error, the system with UIOFTC has similar indices to the nominal system
WFTCN and has higher values of IVU1 and IVU2, due to the adjustments made
to the control signal to compensate the actuator faults. The system with WFTC,
on the other hand, has an IAE about 30% higher and ISE 43% higher than the
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system with UIOFTC , with lower values of IVU1 and IVU2. However, there is
the application of control signal in actuators that are in total fault.
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Figure 20: Performance indices for actuator faults and disturbance normalized with
respect to WFTC.

From Figure 21, it is possible to verify that the states of the reconfiguration
block (x̂f ,k and x̃k) are similar to the system state (xf ,k) regardless of faults. On
the other hand, the reconfigured control signal (uf ,k) differs significantly from
the control signal (uc,k) generated by the nominal controller. This is because
the virtual actuator modifies the nominal control signal so that actuator faults
are compensated and do not interfere with the system behavior. Note also that
when there are no faults, the control signals uf ,k and uc,k are similar.

4.4.5 Simultaneous Sensor and Actuator Faults

In these computer simulations are considered simultaneous sensor and actuator
faults and disturbance, as depicted in figures 22 and 23. From t ≥ 500s, the
second sensor has its measurement reduced by 20%, and the first and second
actuators have 20% and 10% loss in their efficiencies, respectively, namely (γ1,k =

1, γ2,k = 0.8, fs1,k = 0, fs2,k = 0, φ1,k = 0.8, φ2,k = 0.9, fa1,k = 0, fa2,k = 0,
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Figure 21: Simulation for actuator faults and disturbance for UIOFTC : System (xf ,k)
and reconfiguration block states (x̂f ,k and x̃k) (top), nominal (uc,k) and
reconfigured control signals (uf ,k) (bottom).

fault f1), and from t ≥ 1500s there is a partial fault of 50% in the first sensor,
and total faults in the second sensor and the first actuator, i.e. (γ1,k = 0.5,
γ2,k = 0, fs1,k = 0, fs2,k = 0, φ1,k = 0, φ2,k = 0.9, fa1,k = 0, fa2,k = 0, fault
f2). For t ≥ 2500s, the second sensor recovers 50% of its efficiency and the
first pump recovers 90%, and the first sensor and second pump fail completely,
namely (γ1,k = 0, γ2,k = 0.5, fs1,k = 0, fs2,k = 0, φ1,k = 0.9, φ2,k = 0, fa1,k = 0,
fa2,k = 0, fault f3). From t ≥ 3500s, the first sensor recovers 50% of its efficiency,
while the second actuator fully recovers, i.e. (γ1,k = 0.5, γ2,k = 0.5, fs1,k = 0,
fs2,k = 0, φ1,k = 0.9, φ2,k = 1, fa1,k = 0, fa2,k = 0, fault f4). Finally, for
t ≥ 4500s, additive faults occur in sensors and actuators, with values of −0.1 m,
0.05 m, 0.05 and 0.08, respectively, namely (γ1,k = 0.5, γ2,k = 0.5, fs1,k = −0.1,
fs2,k = 0.05, φ1,k = 0.9, φ2,k = 1, fa1,k = 0.05, fa2,k = 0.08, fault f5). Moreover,
a disturbance dk with the same amplitude and duration as the one in the previous
sections is inserted in tank T4.
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Following similar steps as in the other graphs, the fault instants fi, i = 1, . . . ,5,
are indicated by the dashed gray lines and the colored backgrounds illustrate their
duration intervals. These faults can be summarized as:

f1 : γ1,k = 1, γ2,k = 0.8, fs1,k = 0, fs2,k = 0,
φ1,k = 0.8, φ2,k = 0.9, fa1,k = 0, fa2,k = 0, 500 ≤ t < 1500s,

f2 : γ1,k = 0.5, γ2,k = 0, fs1,k = 0, fs2,k = 0,
φ1,k = 0, φ2,k = 0.9, fa1,k = 0, fa2,k = 0, 1500 ≤ t < 2500s,

f3 : γ1,k = 0, γ2,k = 0.5, fs1,k = 0, fs2,k = 0,
φ1,k = 0.9, φ2,k = 0, fa1,k = 0, fa2,k = 0, 2500 ≤ t < 3500s,

f4 : γ1,k = 0.5, γ2,k = 0.5, fs1,k = 0, fs2,k = 0,
φ1,k = 0.9, φ2,k = 1, fa1,k = 0, fa2,k = 0, 3500 ≤ t < 4500s,

f5 : γ1,k = 0.5, γ2,k = 0.5, fs1,k = −0.1, fs2,k = 0.05,
φ1,k = 0.9, φ2,k = 1, fa1,k = 0.05, fa2,k = 0.08, t ≥ 4500s.

(4.90)
Through Figure 22, notice that the output corresponding to the tank T3 level

of the system with WFTC exceeds the maximum safety limit of 0.7 m right after
the fault f2, causing the simulation to be interrupted. As seen previously, this
is due to the fact that sensor faults have occurred and the controller loses the
correct measurement information to continue tracking the reference. The system
with UIOFTC , on the other hand, maintains the output at the desired level, and
close to the nominal WFTCN , regardless of the occurrence of different sensor and
actuator faults and disturbance. Furthermore, it can be seen that the inserted
disturbance is compensated by the system, so that it continues the reference
tracking without offset errors. From Figure 23, it is possible to notice that the
performance of the system with RFTC is affected by the faults that occur and
after the reference change during fault f3, the output of tank T3 reaches the
maximum allowed value and the simulation is interrupted. This is due to the
occurrence of faults that are not covered in the reconfiguration block design and
the inadequate supply of the time-varying parameters that become unmeasured
due to sensor faults. Thus, it is important to note that the reconfiguration block
UIOFTC proposed in this chapter is capable of ensure stability and performance,
even when there are different simultaneous sensor and actuator faults, including
total loss in measurement and actuation. In addition, the loss of both sensors
also causes all premise variables to be unmeasured. However, with the proposed
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Figure 22: Simulations for simultaneous sensor and actuator faults and disturbance for
WFTCN , WFTC, and UIOFTC : Levels h1 and h2 (top) and control signals
u1 and u2 (bottom).

virtual sensor and virtual actuator, its estimates are used to calculate the gains
of the controller and the reconfiguration block itself.
The performance indices of the system are normalized with respect to WFTC

and are presented in Figure 24. Regarding the error, the system with UIOFTC

presents indices close to the nominal system WFTCN , while it has higher values
of IVU1 and IVU2, due to the compensation of the control signal because of actu-
ator faults. Overall, the system with RFTC shows worse performance, followed
by the system with WFTC.
It is also possible to analyze the behavior of the reconfiguration block through

Figure 25. As shown for the other fault scenarios, the virtual sensor and virtual
actuator states (x̂f ,k and x̃k) are similar to the system state (xf ,k), even when



4.4 case study - coupled tanks system 90

0.5

0.6

0.7

0 1000 2000 3000 4000 5000 6000 7000
0

0.5

1

0.3

0.35

0.4

0.45

0

0.5

1

Figure 23: Simulations for simultaneous sensor and actuator faults and disturbance for
UIOFTC and RFTC: Levels h1 and h2 (top) and control signals u1 and u2
(bottom).

different sensor and actuator faults occur. Thus, sensor faults are hidden from
the controller, as the output provided to it depends on the state of the virtual
actuator and not on the faulty output. On the other hand, the control signal
generated by the virtual actuator (uf ,k) modifies the control signal of the nominal
controller (uc,k), in order to compensate the actuator faults that occur during
the simulated period.

4.4.6 Piecewise Constant Disturbance

Finally, simulations are performed to analyze the performance of the system
when it is subject to disturbances. For this, it is considered a piecewise constant
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Figure 24: Performance indices for simultaneous sensor and actuator faults and distur-
bance normalized with respect to WFTC.

disturbance that occurs in the range 1000 ≤ t ≤ 3000s, as depicted in Figure
26. The disturbance dk is inserted in the tank T4, equivalent to applying a
control signal to second pump with an amplitude of 0.1. For a better analysis of
the system performance in the presence of disturbance, it is considered that it
operates without sensor and actuator faults, namely (γ1,k = 1, γ2,k = 1, fs1,k = 0,
fs2,k = 0, φ1,k = 1, φ2,k = 1, fa1,k = 0, fa2,k = 0), and therefore, simulations are
performed only for the system with UIOFTC , RFTC and WFTCN are analyzed.
As can be seen, the system with UIOFTC has practically the same performance as
the nominal system with WFTCN , even during the disturbance period, rejecting
it completely. This is due to the action of the reconfiguration block based on
unknown input observer that estimates the system states independent of the
input dk. On the other hand, the RFTC approach is not able to reject the
disturbance, presenting an error of approximately four centimeters during the
evaluated period. This is because the reconfiguration block design is performed
only to guarantee the system stability with respect to the disturbance with an
ISS gain. That is, even for the system subject to disturbance, but without faults,
there is a better performance of the UIOFTC approach proposed in this chapter
in relation to the RFTC proposed in Chapter 3.
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Figure 25: Simulation for simultaneous sensor and actuator faults and disturbance for
UIOFTC : System (xf ,k) and reconfiguration block states (x̂f ,k and x̃k) (top),
nominal (uc,k) and reconfigured control signals (uf ,k) (bottom).

Figure 27 presents the performance indices for the evaluated methodologies and
which are normalized in relation to the RFTC. It can be observed that the system
with UIOFTC has a performance similar to the nominal system WFTCN , since
all calculated indices have very close values. Furthermore, they presented lower
values than the system with RFTC in all indices, except for IVU2. However, it
is possible to note that this is because the latter does not make any adjustments
to the control signal of the second pump to deal with the disturbance, unlike the
UIOFTC and WFTCN .

Remark 4.7 After analyzing the system performance through different computer
simulations, it is possible to notice that the TS fuzzy reconfiguration block pro-
posed in this chapter is able to guarantee the stability of the closed-loop system
with a certain performance even when it is subject to different sensor and ac-
tuator faults, being they multiplicative and/or additive, including total losses in
both sensors and actuators. From the proposed methodology, it is also possible
to deal with systems that have unmeasured premise variables, even when they be-
come unmeasured due to sensor faults. Furthermore, through an approach based
on unknown input observer, it is obtained a reconfiguration block design with the
dynamics of the estimation error and state difference independent of the distur-
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Figure 26: Simulations for disturbance for WFTCN , UIOFTC , and RFTC: Levels h1
and h2 (top) and control signals u1 and u2 (bottom).

bance, keeping the reference tracking with performance close to the nominal one.
It is important to emphasize that no work in the literature addresses the design of
a reconfiguration block based on UIO for TS fuzzy systems subject to sensor and
actuator faults with unmeasured premise variables. It is also noted that the pro-
posed methodology is capable of dealing with additive faults and has virtual sensor
and virtual actuator design conditions independent of the faulty model, unlike the
LPV approach presented in Chapter 3. Consequently, the proposed strategy leads
to a lower number of rules used to describe the problem.
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5
CONCLUS IONS

This Thesis aims to develop new FTC strategies based on the fault hiding method-
ology for nonlinear systems. For this, reconfiguration blocks composed of virtual
sensors and actuators are proposed, capable of ensuring the stability and perfor-
mance of systems described by discrete-time TS fuzzy and LPV models, even in
the presence of sensor and actuator faults. As discussed along this Thesis, dif-
ferent methodologies for the design of LPV and TS fuzzy reconfiguration blocks
have been proposed in the literature, but they usually need to use different re-
configuration block designs for each type of fault. In order to overcome such
limitations, this Thesis has presented new robust LPV and TS fuzzy reconfigu-
ration blocks, capable of dealing with different types and magnitudes of sensor
and actuator faults.
The methodology proposed in Chapter 3 provides improved fault hiding ap-

proach for nonlinear systems described by LPV models with input and output
matrices dependent on time-varying parameters. This approach produces an
LPV reconfiguration block that is robust to different fault scenarios and mag-
nitudes by enabling to design a single reconfiguration block for a set of faults.
Therefore, a single virtual sensor and virtual actuator design can be used through-
out the execution of the control algorithm, being able to cover various types and
magnitudes of faults that may occur. These faults can be of sensor and/or ac-
tuator, partial of different magnitudes and/or total faults. The effectiveness of
the proposed methodology for the LPV case has been verified via experiments
in a real-world nonlinear level-control process and it has been compared with
other approaches found in the literature by means of performance indices. The
experimental evaluation indicates that the proposed approach is able to mitigate
the fault effects in different scenarios by means of the robust LPV virtual sensor
and actuator. Furthermore, the IAE, IVU and ISE indices indicated that the
performance of the reconfiguration blocks obtained by means of the proposed
conditions outperform the literature results.
The FTC approach presented in Chapter 4 proposes a TS fuzzy reconfigura-

tion block based on unknown input observer for systems with sensor and actuator
faults and with unmeasured premise variables, even when these become unmea-
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sured due to sensor faults. By describing the faults as additives, it is possible
to design a virtual sensor and actuator with a smaller number of rules, since
the input and output matrices of the faulty model do not depend on the indica-
tions of sensor and actuator faults. Thus, a single reconfiguration block design
is carried out, which includes additive and multiplicative faults of different mag-
nitudes, the latter being partial and/or total in both sensors and/or actuators.
Furthermore, unlike other approaches in the literature, the system may have un-
measured premise variables and disturbances, and even so, the proposed FTC
strategy continues to guarantee stability and performance similar to the nominal
system. The efficiency for the TS fuzzy case has been assessed using computer
simulations of the coupled tanks nonlinear system subject to different fault sce-
narios and disturbance. Through the analysis of graphs and performance indices,
the time-responses of the system with the proposed reconfiguration block have
been compared with those obtained by the closed-loop system without any FTC
strategy implemented and with the system with the methodology proposed in
Chapter 3. Thus, it has been possible to verify that, in all cases, only the recon-
figuration block based on UIO of the Chapter 4 is able to ensure the stability
and performance of the faulty system.
Therefore, the main results presented throughout this Thesis can be summa-

rized as follows.

1. Novel sufficient LMI conditions for the design of virtual sensors and ac-
tuators for nonlinear systems described by LPV models with parameter-
dependent input and output matrices. The reconfiguration block designed
has the ISS guaranteed and ensures the IOS of the closed-loop system.

2. Novel sufficient LMI conditions for the design of virtual sensors and actu-
ators based on UIO for nonlinear systems represented by TS fuzzy models
with unmeasured premise variables and subject to disturbances. The recon-
figuration block obtained is stable with guaranteed H∞ performance and
the performance of the faulty system is similar to the nominal one.

3. Inclusion of sensor and actuator faults in a polytopic representation of the
faulty LPV model.

4. Novel robust LPV and TS fuzzy reconfiguration blocks composed of a vir-
tual sensor and a virtual actuator. From its use, the closed-loop system
has guaranteed stability for a set of faults. Thus, partial faults of different
magnitudes are addressed, as well as total losses of sensors and actuators.
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For the fuzzy TS case, additive faults of different magnitudes are also con-
templated.

5. Evaluation and validation of the efficiency of the proposed LPV approach
for real-time experiments in MIMO nonlinear level-control system in com-
parison with other methodologies. From the results obtained, a better
performance is verified in different fault scenarios of the proposed reconfig-
uration block.

6. Verification and analysis of the performance obtained by the proposed TS
fuzzy reconfiguration block, in comparison with the performance of the
system without any FTC strategy implemented and with the proposed
LPV methodology, through computer simulations and for a faulty system
with unmeasured premise variables and subject to disturbances. Through
the analysis of the obtained results, a better performance with the proposed
FTC TS fuzzy strategy is observed.

As a possibility of continuing the work and future contributions, a limitation
of the reconfiguration blocks as proposed in this work (Chapters 3 and 4) and
in the literature [15, 20, 21, 23, 30] can be highlighted. This limitation is the
explicit dependence on an FDI module to provide information about the faults,
as seen in Assumption 2.1. The dynamics of the virtual sensor and actuator
are directly related to this fault information, through fault indications expressed
by time-varying parameters and by additive terms of faults. However, the fault
estimation made by the FDI module may not indicate an event of fault or even
to indicate a false alarm. Thus, the stability and performance of the closed-
loop system can be deteriorated and a possible future direction is to investigate
methodologies that guarantee stability and performance even in the presence of
errors in the fault detection and isolation module. In the literature, different
approaches are proposed, through the description of the uncertainties of fault
estimation as disturbances [20], or with the use of an adaptive fault estimator
together with a virtual sensor [29]. Both methodologies address the isolated case
of a virtual actuator [20] or a virtual sensor [29]. Therefore, a future contribution
would be the proposal of designing a robust reconfiguration block to different
types of sensor and actuator faults with possibly errors in the FDI system and
with unmeasured premise variables.

In addition, it is intended to implement the reconfiguration block proposed
in Chapter 4, as well as the future methodologies to be developed, in the test
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bed of coupled tanks, analyzing its performance in different fault scenarios, as
presented in Section 4.4, in comparison to other strategies.
The results presented in Chapter 3 are based on the content of the following

article published in the ISA Transactions and part of the results presented in
Chapter 4 has been submitted in the Information Sciences.

• M. M. Quadros, I. V. Bessa, V. J. S. Leite, and R. M. Palhares. “Fault
Tolerant Control for Linear Parameter Varying Systems: An Improved
Robust Virtual Actuator and Sensor Approach”. In: ISA Transactions
(2020). https://doi.org/10.1016/j.isatra.2020.05.010

• M. M. Quadros, V. J. S. Leite, and R. M. Palhares. “Robust Fault Hiding
Approach for T–S Fuzzy Systems with Unmeasured Premise Variables”.
Submitted.

https://doi.org/10.1016/j.isatra.2020.05.010


A
CONTROLLER AND RECONF IGURATION BLOCK GAINS
COMPUTED IN CHAPTER 3

a.1 controller gains

K1 =
[
−2.4034 −2.0259 0.3192; −1.8664 −1.5732 0.2479

]
;

K2 =
[
−7.8176 −1.3646 0.6772; −6.0709 −1.0597 0.5259

]
;

K3 =
[
−2.4280 −2.0191 0.3189; −1.8855 −1.5680 0.2476

]
;

K4 =
[
−7.8202 −1.4164 0.6781; −6.0729 −1.0999 0.5266

]
;

K5 =
[
−3.0544 −1.2427 0.3020; −2.3719 −0.9650 0.2345

]
;

K6 =
[
−7.9322 −1.2667 0.6781; −6.1599 −0.9837 0.5266

]
;

K7 =
[
−3.0590 −1.2603 0.3010; −2.3755 −0.9787 0.2338

]
;

K8 =
[
−7.9324 −1.3247 0.6789; −6.1600 −1.0287 0.5272

]
.

(A.1)

a.2 virtual sensor gains

L1,2,3,4 =

−0.3191 −1.0587
−0.0266 −1.2246

 ; L5,6,7,8 =

−0.3313 −3.0296
−0.0413 −3.2741

 ;

L9,10,11,12 =

−0.2895 −1.2636
−0.0229 −1.2404

 ;L13,14,15,16 =

−0.3266 −3.7168
−0.0335 −3.3358

 ;

L17,18,19,20 =

−0.5840 −0.8513
−0.0245 −1.2266

 ;L21,22,23,24 =

−0.6018 −2.6222
−0.0413 −3.2700

 ;

L25,26,27,28 =

−0.4709 −1.2924
−0.0195 −1.2425

 ;L29,30,31,32 =

−0.4489 −3.9588
−0.0306 −3.3428

 ;
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L33,34,35,36 =

−0.3191 −1.0587
−0.0267 −1.2697

 ; L37,38,39,40 =

−0.3193 −3.0856
−0.0417 −3.3891

 ;

L41,42,43,44 =

−0.2895 −1.2636
−0.0230 −1.2855

 ; L45,46,47,48 =

−0.3243 −3.7020
−0.0349 −3.4408

 ;

L49,50,51,52 =

−0.5840 −0.8513
−0.0246 −1.2717

 ; L53,54,55,56 =

−0.5853 −2.7282
−0.0429 −3.3807

 ;

L57,58,59,60 =

−0.4709 −1.2925
−0.0195 −1.2876

 ; L61,62,63,64 =

−0.4206 −3.8292
−0.0228 −3.5039

 ;

L65,66,67,68 =

−0.4486 −0.9561
−0.0160 −1.2333

 ; L69,70,71,72 =

−0.4643 −2.8285
−0.0326 −3.2834

 ;

L73,74,75,76 =

−0.3979 −1.2551
−0.0131 −1.2424

 ; L77,78,79,80 =

−0.4403 −3.8650
−0.0244 −3.3284

 ;

L81,82,83,84 =

−0.5902 −0.8474
−0.0152 −1.2341

 ; L85,86,87,88 =

−0.6109 −2.6083
−0.0334 −3.2774

 ;

L89,90,91,92 =

−0.4523 −1.2383
−0.0094 −1.2431

 ; L93,94,95,96 =

−0.4521 −3.8174
−0.0088 −3.3852

 ;

L97,98,99,100 =

−0.4486 −0.9561
−0.0161 −1.2784

 ;L101,102,103,104 =

−0.4483 −2.9215
−0.0345 −3.3911

 ;

L105,106,107,108 =

−0.3979 −1.2552
−0.0131 −1.2875

 ;L109,110,111,112 =

−0.4380 −3.9001
−0.0265 −3.4366

 ;

L113,114,115,116 =

−0.5901 −0.8474
−0.0152 −1.2792

 ;L117,118,119,120 =

−0.5947 −2.7351
−0.0366 −3.3792

 ;

L121,122,123,124 =

−0.4414 −1.2213
−0.0013 −1.2879

 ;L125,126,217,128 =

−0.4575 −3.8377
−0.0163 −3.4656

 .

(A.2)



A.3 virtual actuator gains 102

a.3 virtual actuator gains

M1,5,9,13 =

−3.1631 −6.3457
−1.1029 −1.0082

 ; M2,6,10,14 =

−3.8300 −6.9745
−0.1185 −0.1661

 ;

M3,7,11,15 =

−3.4090 −8.5158
−1.9079 −2.8006

 ; M4,8,12,16 =

−4.5262 −10.2217
−0.3651 −0.5845

 ;

M17,21,25,29 =

−13.3957 −10.6644
−3.0753 −1.6469

 ;M18,22,26,30 =

−14.2618 −11.1269
−2.3644 −1.2764

 ;

M19,23,27,31 =

−15.3126 −12.1013
−3.6672 −2.0190

 ;M20,24,28,32 =

−16.5737 −12.8469
−2.7795 −1.5034

 ;

M33,37,41,45 =

−3.1627 −6.4470
−1.1018 −0.9659

 ; M34,38,42,46 =

−3.8291 −7.0416
−0.1179 −0.1499

 ;

M35,39,43,47 =

−3.4140 −8.7009
−1.9030 −2.7373

 ; M36,40,44,48 =

−4.5300 −10.3642
−0.3597 −0.5357

 ;

M49,53,57,61 =

−13.4187 −11.0317
−3.0691 −1.6651

 ;M50,54,58,62 =

−14.2876 −11.5067
−2.3565 −1.2842

 ;

M51,55,59,63 =

−15.4441 −12.6391
−3.6053 −1.9876

 ;M52,56,60,64 =

−16.9943 −13.5131
−2.5008 −1.3258

 ;

M65,69,73,77 =

−4.4998 −5.0346
−1.5966 −0.5153

 ; M66,70,74,78 =

−5.4678 −5.3739
−0.1611 −0.1039

 ;

M67,71,75,79 =

−4.7944 −7.1867
−2.7370 −1.9933

 ; M68,72,76,80 =

−6.4097 −8.4080
−0.5112 −0.4219

 ;

M81,85,89,93 =

−13.4932 −10.5310
−3.1087 −1.6232

 ;M82,86,90,94 =

−14.3696 −10.9744
−2.3893 −1.2611

 ;

M83,87,91,95 =

−15.4176 −11.8800
−3.7121 −2.0034

 ;M84,88,92,96 =

−16.6925 −12.5607
−2.8235 −1.5212

 ;
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M97,101,105,109 =

−4.5408 −5.0584
−1.5348 −0.4489

 ; M98,102,106,110 =

−5.5263 −5.3654
−0.0184 −0.0040

 ;

M99,103,107,111 =

−4.8110 −7.3219
−2.6962 −1.8506

 ; M100,104,108,112 =

−6.3388 −8.4226
−0.2744 −0.2186

 ;

M113,117,121,125 =

−13.6041 −10.6640
−3.0891 −1.5653

 ;M114,118,122,126 =

−14.4879 −11.1098
−2.3633 −1.2008

 ;

M115,119,123,127 =

−15.6925 −12.1643
−3.6284 −1.9281

 ;M116,120,124,128 =

−17.0792 −12.8991
−2.6345 −1.4089

 .

(A.3)



B
CONTROLLER AND RECONF IGURATION BLOCK GAINS
COMPUTED IN CHAPTER 4

b.1 controller gains

K1 =
[
−2.9282 −1.0485 0.3142; −2.2905 −0.8201 0.2458

]
;

K2 =
[
−3.2069 −0.6802 0.3053; −2.5085 −0.5320 0.2388

]
;

K3 =
[
−6.7700 −0.8506 0.6457; −5.2956 −0.6654 0.5051

]
;

K4 =
[
−6.8463 −0.7672 0.6440; −5.3553 −0.6001 0.5038

]
.

(B.1)

b.2 ts fuzzy virtual sensor gains

L1 =
[
0.7317 0.2683; 0 0

]
;

L2 =
[
0.8471 0.1529; 0 0

]
;

L3 =
[
0.9642 0.0358; 0 0

]
;

L4 =
[
0.9796 0.0204; 0 0

]
.

(B.2)

b.3 ts fuzzy virtual actuator gains

M1 =
[
−3.8575 −1.4147; −3.0175 −1.1066

]
;

M2 =
[
−4.4660 −0.8062; −3.4935 −0.6306

]
;

M3 =
[
−11.3758 −0.4223; −8.8988 −0.3303

]
;

M4 =
[
−11.5575 −0.2406; −9.0409 −0.1883

]
.

(B.3)
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