
Gustavo Linhares Vieira

Trip Planning Optimization: Minimizing Cost
and Travel Time in Itineraries With Multiple

Destinations

Belo Horizonte - MG
November 2018

Trip Planning Optimization:
Minimizing Cost and Travel Time in
Itineraries With Multiple Destinations

Gustavo Linhares Vieira
Federal University of Minas Gerais

Supervisor: Frederico Gadelha Guimarães

Dissertação de Mestrado submetida à Banca Examinadora designada pelo
Colegiado do Programa de Pós-Graduação em Engenharia Elétrica da Escola
de Engenharia da Universidade Federal de Minas Gerais, como requisito para
obtenção do Título de Mestre em Engenharia Elétrica.

Belo Horizonte - MG
November 2018

iii

Abstract

The internet changed significantly the tourism industry. Nowadays,
people have more autonomy than ever to research and plan their trips,
customized according to their interests. However, current planning tools
still require the traveller to spend a lot of time and effort to find the
best tickets and hotels for a complete trip itinerary. In situations where
the dates and destination ordering are flexible, the number of possible
options is even bigger, making the search even harder.

In order to solve this problem, a method that searches the best
combinations of flights and accommodations for a trip itinerary was
developed, minimizing costs and travel time. In order to do so, multiob-
jective optimization methods specially adapted to the problem are used.
The system is able to get inputs from the user and handle variations in
departure dates, stay lengths in each part of the trip and even destina-
tions ordering, which makes it stand out comparing to other existing
tools.

The proposed solution is able to quickly find a set of good itineraries,
offering the traveller diverse options with little effort. This system
represents a big improvement in the trip planning experience, with
better optimization times and solutions quality. This way, this work can
offer a significant advantage to tickets and hotels e-commerce platforms
and be easily applied to the online tourism market.

Keywords: Multiobjective Optimization, Decision Making, Trip
Planning, Combinatorial Optimization, Ant Colony Optimization

iv

v

Resumo

A internet mudou significativamente a indústria do turismo. At-
ualmente, as pessoas tem mais autonomia que nunca para pesquisar
e planejar suas viagens de forma personalizada, de acordo com seus
interesses. No entanto, as ferramentas de planejamento atuais ainda
exigem grande tempo e esforço do viajante para descobrir as melhores
passagens e hotéis para um roteiro completo de viagem. Em casos com
flexibilidade nas datas e ordenação de destinos, o número de possíveis
opções é ainda maior, tornando a busca ainda mais trabalhosa.

Para solucionar esse problema, foi desenvolvido um método capaz de
buscar as melhores combinações de vôos e acomodações para um roteiro
de viagem, minimizando os custos e o tempo de transporte. Para isso,
são utilizados métodos de otimização multiobjetivo adaptados para o
problema específico. O sistema é capaz de receber inputs do usuário
e acomodar variações nas datas de partidas, duração das estadias em
cada destino e até na ordem dos destinos, se diferenciando assim das
ferramentas existentes.

A solução proposta é capaz de encontrar um conjunto de bons itin-
erários de forma eficiente, oferecendo ao viajante escolhas rápidas entre
diversas opções com esforço mínimo. Esse sistema representa um grande
avanço na experiência de planejamento de viagens, com melhorias no
tempo necessário e na qualidade das opções encontradas. Com isso,
esse trabalho pode oferecer um diferencial significativo para sistemas de
vendas de passagens e hotéis e ter aplicabilidade direta no mercado de
turismo online.

Palavras Chave: Otimização Multiobjetivo, Tomada de Decisões,
Planejamento de Viagens, Otimização Combinatória, Otimização por
Colônia de Formigas

vi

Declaration

This thesis is result of my own work, except where explicitly referred to other works,
and it was not submitted to any other Institution.

vii

viii

Acknowledgements

This work is only possible due to all the help and support along the way. My deepest
gratitude to all whose support is irreplaceable:

First, to my advisor Frederico, for the constant support, patience and constructive
guidance over these years. It is extremely reassuring to have well-thought-out counsel
whenever necessary. Thank you for the great example as well. A great reference to follow
is better than a thousand words.

To Professor Lucas Batista, who first advised me on this work. Much of these results
are due to his incredibly deep analysis and suggestions.

To Professor Cristiano Castro, for all the guidance and opportunities. Thank you for
the trust.

To Professor Patrícia Pena, who first opened the door to science and research for me.
Thanks for all the incentive and for always believing in me.

To all my colleagues at MINDS, for the great company for both conversation and
research over the years. It’s a pleasure to work with you.

To all the technical body at UFMG who made all this possible, as well as CAPES
and FAPEMIG for the financial support along the way.

Any achievement is only possible in the right circumstances. I’m also incredibly
grateful to all those whose effort helped me to be here today:

To my mother, Rose, for the ever present encouragement to go beyond my comfort
zone, for the unmovable belief in me and for all the sacrifice and dedication to my
education. Thank you for doing everything and more so I could be the best possible me.

To my father, Márcio, for the unconditional support, for the resilience and for the
great example in many things. I hope we can still help each other grow even more.

ix

x

To my grandmothers, Neide and Nair, for the all the incredible care. Any hardship
gets smaller with a grandmother’s hug. And my grandfather, Jair, for the encouragements
and help along the way.

To my sisters, Helena, Laura and Laís, for always making me feel so loved. Life is
incredibly brighter since you arrived. Sometimes the world looks a bit too daunting, but
you girls make me never give up on trying to build a better tomorrow for us all.

To Yann, for making even the hardest days still wonderful, for the patience, and for
the best slice of pizza. Life is much better with you walking by my side.

To all my friends, for all the laughs and hugs and company. It is incredible to have
all of you in my life.

Finally, a big thank you to all those who believe in science, research and education
as tools for building a better world for everyone. I am incredibly lucky for all the
opportunities I had, and they were only possible due to all the people who support our
schools and universities.

Contents

List of figures xv

List of tables xvii

1 Introduction 1
1.1 Motivation . 1
1.2 Objectives . 3
1.3 Dissertation Outline . 4

2 Theory Overview and Literature Review 5
2.1 Trip Planning Literature . 5
2.2 Optimization Concepts . 7
2.3 Optimization Method Evaluation . 8
2.4 Optimization Methods . 11

2.4.1 Ant Colony Optimization . 11
2.4.2 Local Search . 12

2.5 Multi-objective Optimization . 14
2.5.1 Dominance and the Pareto Frontier 15
2.5.2 Diversity Preservation for Multi-objective Problems 16
2.5.3 Multi-objective Ant Colony Optimization (MOACO) 17
2.5.4 Multi-objective Evolutionary Algorithm Based on Decomposition

(MOEA/D) . 19
2.5.5 MOEA/D-ACO . 20
2.5.6 Hybrid Meta-heuristics and Two-Phase Pareto Local Search . . . 21
2.5.7 Performance Metrics for Multiobjective Problems 22

2.6 Hyperparameter Selection . 23
2.7 Decision Support Methods . 24
2.8 Summary . 25

xi

xii Contents

3 Methodology 27
3.1 Problem Representation . 27

3.1.1 Data Structure . 28
3.1.2 Solution Structure . 30
3.1.3 Objective Functions . 30
3.1.4 Problem Restrictions . 32
3.1.5 Search Space . 33

3.2 Data Gathering, Processing and Generation 35
3.2.1 Data Source . 35
3.2.2 Data Querying . 36
3.2.3 Search Space Reduction . 37

3.3 Optimization . 38
3.3.1 Multiobjective Ant Colony Optimization 38
3.3.2 Local-search MOACO . 40
3.3.3 Distributed MOACO . 42
3.3.4 MOEA/D-ACO . 42
3.3.5 Method Choice Considerations . 45
3.3.6 Hyperparameter Tuning . 46
3.3.7 Robustness evaluation . 47

3.4 Decision Support . 48
3.5 Example . 48
3.6 Summary . 62

4 Results 65
4.1 Experimental Definitions and Setup . 65

4.1.1 Technical Information . 65
4.1.2 Problem Instances . 65
4.1.3 Results Evaluation . 68

4.2 Experiments Results . 70
4.2.1 Multiobjective Ant Colony Optimization (MOACO) 71
4.2.2 Local Search MOACO . 73
4.2.3 Distributed MOACO . 74
4.2.4 MOEA/D-ACO . 77
4.2.5 Local-search MOEA/D-ACO . 80
4.2.6 Distributed MOEA/D-ACO . 81
4.2.7 Distributed Local-search MOEA/D-ACO 83

Contents xiii

4.3 Results Analysis . 85
4.3.1 Methods Comparison . 85
4.3.2 Local-search Effect . 87
4.3.3 Distributed Implementation Effect 88
4.3.4 Number of Groups on MOEA/D-ACO 91

4.4 Trip Size Analysis . 93
4.5 Restrictions Effects and Discussion . 94
4.6 Summary . 97

5 Conclusion 99
5.1 Contributions and Applicability . 99

5.1.1 Trip Itinerary Planning System 99
5.1.2 Ant Colony Optimization Application 100
5.1.3 Limitations . 101

5.2 Future Work Proposals . 102
5.2.1 Data Gathering . 102
5.2.2 User Experience and Interface . 103
5.2.3 Optimization Improvements . 104

References 107

xiv

List of figures

2.1 Quality over time for two optimization methods (source: [23]). 10

2.2 Comparison of two algorithms considering the average number of steps
until reaching a solution versus the problem size (source: [23]). 10

2.3 Local Search representation in a single objective continuous problem
(source: [48]). 13

2.4 Pareto Frontier of a two objective optimization problem 16

2.5 Crowding Distance of a solution in a two objective problem 17

2.6 Hypervolume evaluated for a set of solutions in a two objective problem
(adapted from [37]) . 23

3.1 Feasible solutions search space graph for a 2 destinations unordered trip . 34

3.2 Trip Solutions (normalized values) . 62

4.1 Average relative hypervolume over time for a problem instance with 5
destinations. 69

4.2 Solution set obtained after the optimization of a 5 destination problem
instance. 70

4.3 Summarized results for MOACO, Distributed Local MOACO, Local
MOEA/D-ACO and MOEA/D-ACO. 71

4.4 Relative Hypervolume over time results for MOACO method on instances
with 2 to 7 destinations . 72

4.5 Relative Hypervolume over time results for Local Search MOACO method
on instances with 2 to 7 destinations . 74

xv

xvi LIST OF FIGURES

4.6 Relative Hypervolume over time results for Distributed MOACO method
on instances with 2 to 7 destinations . 75

4.7 Relative Hypervolume over time results for Distributed Local Search
MOACO method on instances with 2 to 7 destinations 78

4.8 Relative Hypervolume over time results for MOEA/D-ACO method on
instances with 2 to 7 destinations . 79

4.9 Relative Hypervolume over time results for Local-search MOEA/D-ACO
method on instances with 2 to 7 destinations 81

4.10 Relative Hypervolume over time results for Distributed MOEA/D-ACO
method on instances with 2 to 7 destinations 83

4.11 Relative Hypervolume over time results for Distributed Local Search
MOEA/D-ACO method on instances with 2 to 7 destinations 84

4.12 Pairwise comparison of relative hypervolume of all methods presented. . . 86

4.13 Local-search effect on relative hypervolume for MOACO and MOEA/D-
ACO methods . 88

4.14 Local-search effect on start-up times. 89

4.15 Distributed approach effect on hypervolumes of MOACO and MOEA/D-
ACO methods. 90

4.16 Distributed approach effect on start-up times on Local-search methods. . 91

4.17 Relative hypervolume distribution for MOEA/D-ACO with different num-
ber of groups. 92

4.18 Search space size for problems with 2, 3 and 4 destinations. 94

4.19 Relative hypervolume distribution for Distributed Local-search MOACO
with different number of destinations. 95

4.20 Relative hypervolume distribution for MOEA/D-ACO with different num-
ber of destinations. 96

4.21 Restrictions effects on search space size for problems with 2, 3 and 4
destinations. 98

List of tables

3.1 Accommodation Options . 49

3.2 Transports Options . 54

3.3 Optimization Results . 62

3.4 Solution Ranking . 63

4.1 Summarized results of MOACO experiments 73

4.2 Summarized results of Local Search MOACO experiments 73

4.3 Summarized results of Distributed MOACO experiments 76

4.4 Summarized results of Distributed Local Search MOACO experiments . . 77

4.5 Summarized results of MOEA/D-ACO experiments 80

4.6 Summarized results of Local-search MOEA/D-ACO experiments 82

4.7 Summarized results of Distributed MOEA/D-ACO experiments 82

4.8 Summarized results of Distributed Local-search MOEA/D-ACO experiments 85

xvii

xviii

Acronyms and Abbreviations

ACO Ant Colony Optimization

GRASP Greedy Randomized Adaptive Search Procedure

HV Hypervolume

MOACO Multi-objective Ant Colony Optimization

MOEA/D Multi-objective Evolutionary Algorithm Based on Decomposition

TSP Travelling Salesman Problem

TSPTW Travelling Salesman Problem with Time Windows

V NS Variable Neighborhood Search

WPM Weighted Product Model

WSM Weighted Sum Model

xix

xx LIST OF TABLES

Chapter 1

Introduction

1.1 Motivation

The tourism market has been on the rise over the past couple of decades. Flights prices
dropped, the number of airports increased, and much more connections are available,
and reports by the World Travel & Tourism Council [55] indicates that this growth
will continue. Multi-billion valuated Airbnb and the rise of couchsurfing increased the
diversity of accommodations types and prices as well. Finally, information access is much
more widespread, with the ubiquity of connected phones and computers. As a result, the
number of travellers grew significantly. This market growth is reflected on the increased
number of travel-related companies, such as hotel networks and flight companies [4].

Much of this growth happened through online tourism. Traffic in websites for buying
flights or booking accommodations keeps increasing [7]. More than just providing a new
venue for old habits, the internet essentially changed the way people travel. An online
tourism analysis [8] indicates that consumers tend to seek more customization on their
trips. Instead of buying a one-for-all package, they now want to tailor the trip to their
personal needs. As a result of that, independent trip planning surpassed purchases in
travel agencies [4].

However, planning a trip on your own is not a simple task. Even though research
indicates that travellers enjoy planning the destinations and activities for their journey
[31], buying flights and making reservations still takes some time. The high number of
options and prices variations (both over time and through different sellers) make the task
even harder.

1

https://www.airbnb.com/

2 Introduction

In light of this situation, many tools that aim to help on trip planning have come up.
Many of them try to help users to get and select information needed to plan their trip,
such as flights and accommodations available, as well as facilitating the buying process.
Among these, some prominent examples are Skyscanner, Expedia, GoEuro, Rome2rio,
Decolar, Booking and Hipmunk.

Others have a different approach and aim to help customers decide which destinations
they want to travel to and what activities, tours and attractions they want to seek in
these destinations, such as TripAdvisor. Some even go a step further and try to build a
profile for users and make suggestions based on that, including Utrip. Finally, a few of
these tools additionally help the user organize a day plan for their trip and share it with
others, like Voyajo and TripHobo.

But while these tools definitely help, they still do not solve completely one of the
major pains of planning a trip: hunting for cheaper flights and accommodations. Most
existing solutions1 can only search for flights between one pair of destinations at a time.
For bigger itineraries with more destinations, the user needs to search for each branch of
the trip separately, which can be time consuming. The problem is even more complex for
more flexible trips. What if the departure date or length of the stay in each destination
can change? Or even the order of the destinations visited? The number of possible
configurations for the trip itinerary becomes prohibitive. None of the current known
tools is adequate for this kind of situation.

The problem gets even harder if more factors are taken into consideration besides the
cost of the trip. Travel time, for example, is also very important for a traveller. Direct
flights are usually faster, but more expensive. The trade-off might be worth for some
users, so it is important to give them choice among some of the best options.

In order to find the best options, a traveller would need to consider all the possible
itineraries and the combination of available flights and accommodations. There might be
a few options that are cheaper and faster than the others, but they might not be found
by the user because searching for them would take too much time, given current tools.
Even if they tried, the prices might have changed by the time they were done. Thus,
people often have to settle for a sub-optimal trip plan, even after spending a long time
researching.

1Hipmunk is a notable exception

www.skyscanner.com
www.expedia.com
www.goeuro.com
www.rome2rio.com
www.decolar.com
www.booking.com
www.hipmunk.com
www.tripadvisor.com
www.utrip.com
www.voyajo.com
www.triphobo.com

Introduction 3

The problem described can be seen as an optimization problem in which the user seeks
to minimize cost and travel time for a trip. Optimization is often used to solve similar
logistic problems, with various real world applications: traffic organization in big cities
[18] [56], delivery of goods [12] [49], route planning for cars [11], agricultural vehicles [1],
VANTs [34], satellites [40] and even space probes [50]. While all these problems are quite
varied, all of them seek the same thing: given a large number of possible options, how to
find the ones that give the best results, considering a set of criteria (such as cost, time,
etc)?

Modeling this problem as an optimization problem and applying the appropriate
methods to solve it could help users find better flights and accommodations for their
trips in a shorter time, with no downsides. This could greatly improve the trip planning
experience and become a valuable tool for a great number of users, both in personal and
professional settings.

1.2 Objectives

This work aims to build a tool to solve the aforementioned trip planning problem using
optimization methods. The resulting system should be able to find good solutions for a
trip itinerary in a reasonable time.

The proposed solution should be able to:

• Get a trip itinerary as input from the user. This itinerary consists in a set of
destinations to visit and specifications regarding each of them, such as stay duration,
desired dates and (optionally) order in the itinerary. It is important that the
system can handle flexibility in these dates if defined by the user, as well as other
restrictions.
• Query a data source (real or not) for all the available flights and accommodations

that are feasible regarding to the user’s itinerary.
• Use the data gathered and optimization methods to find the best flights and

accommodations combinations for the trip, minimizing cost and travel time.
• Present these options to the user and allow further filtering and selection based on

the user’s preferences between the criteria, aiding their decision.

4 Introduction

The work does not aim to build a finished product ready for real-world application.
However, it should assess the viability of such a tool and, if possible, build foundations
that could be further used for achieving this goal.

1.3 Dissertation Outline

The remainder of this dissertation is organized as follows: Chapter 2 presents concepts
needed for the comprehension of the work and a brief review of the travel planning
literature. Chapter 3 describes the mathematical formulation of the problem and the
methods used to solve it, including the data query system, the optimization techniques
implemented and decision-making support methods used. The experiments performed
and results obtained constitute Chapter 4. Finally, Chapter 5 presents some final
considerations about the work and its applicability, summarizes the contributions and
proposes ideas for future work.

Chapter 2

Theory Overview and Literature
Review

This chapter presents an overview of some optimization concepts needed for the compre-
hension of the work. It also presents a brief review of trip planning problems found in
the literature.

2.1 Trip Planning Literature

The planning problem presented in this work consists in finding the best combinations
of flights and accommodations that minimize the cost and travel time for a trip. It is
subject to several restrictions, such as dates and stay duration for each destination and
the whole trip and accommodation and transportation preferences.

The proposed problem is an application of the Traveling Salesman Problem (TSP)
with Time Windows Constraints [25]. This problem consists in finding the route with
smaller cost that goes through all the cities in a set exactly once and returns to the
departing city in the end. Each route between cities has an associated cost, and each
city on the set must be visited within a specific time window.

This NP-complete problem [16] can be seen as the combination of the classic TSP
problem with scheduling problem, and has many practical applications, such as routing,
manufacture tasks scheduling and delivery planning. In this work, each node of the graph
is a destination, and the edges between nodes represent a combination of a flight and an

5

6 Theory Overview and Literature Review

accommodation for that destination. The time windows are optionally defined by the
user.

There are many proposed solutions for the TSP with Time Windows with Constraints.
In [10], an heuristic based on the solution of smaller subproblems and local search is
presented. A Beam-ACO method, a hybrid between ACO and beam search, using
stochastic sampling and local search is shown in [38]. A fuzzy approach to the problem is
proposed in [43], which gives more flexibility to the modeling and achieves good results.
General Variable Neighborhood Search methods are used in [14] to solve the TSPTW
problem. In [35], a Discrete Artificial Bee Colony algorithm with local search is applied
to the problem.

These solutions, however, aim to solve single objective instances of the TSPTW
problem, unlike the one presented in this work. In addition, the problems solved are
benchmark problems. There are no practical applications for trip itinerary planning
problems similar to the proposed one.

A big part of the trip planning literature focus on the Tourist Trip Design Problem.
The essence of the problem is planning a route between Points of Interest (POI) in a
city, maximizing the satisfaction score. The problem must consider POI’s opening times
and the transportation options between them, and can also take in account additional
restrictions such as budget or m number of POIs. These problems are usually formulated
as Orienteering Problems or variations, such as Team Orienteering Problems or Multi
Constrained Team Orienteering Problem with Time Windows.

The main difference between these problems and the proposed Trip Itinerary Planning
Problem is that the Tourist Trip Design Problem do not require all the points of interest
to be visited, while all destinations must be visited in the Trip Itinerary Planning
Problem. In addition, only one possible route cost between POIs is considered, while
many variations are present in this work’s problem, which increases the complexity. Both
are NP-hard and usually solved with heuristics and meta-heuristics.

There are many proposed solutions for the Tourist Trip Design Problem and its
variations. In [6] a Fuzzy GRASP approach is presented with interesting results for a
single objective problem. A similar problem is solved with a greedy algorithm in [3]. A
taboo search method is proposed in [45] and applied to a time constrained problem. An
alternative approach based on Simulated Annealing is presented in [46]. [27] introduces
an iterated local search meta-heuristic for a multi constrained problem. A more generalist
time-dependent extension is presented in [29] using randomized meta-heuristics.

Theory Overview and Literature Review 7

The orienteering problem with hotel selection, an extension of the base problem,
is discussed in [17]. A Skewed Variable Neighborhood Search is used to solve it, with
problem-specific neighborhood structure is proposed as well. The inclusion of hotels
in the optimization problem brings this problem closer to the Trip Itinerary Planning
Problem considered in this work. However, it lacks other restrictions such as Time
Windows.

There are other optimization research that, although focused on different problems,
present interesting approaches that can be extended to the TSPTW. Among these, [52]
presents a extensive review of graph search algorithms and proposes extensions for the
methods, with focus on real-time solutions.

2.2 Optimization Concepts

An optimization problem can be seen as a search problem in which the aim is finding the
best solutions among all the possible ones, given a set of criteria to evaluate the quality of
these solutions. This criteria-based evaluation is represented as a mathematical function
(known as objective function) that take as input a solution and return its quality value.
The set of all possible solutions for a problem constitutes the optimization search space.

It is common that there are restrictions to the solutions of an optimization problem.
Any solution that violates these restrictions is not valid, even if within the search space.
Therefore, restrictions lower the total number of feasible solutions and limit them to a
subset of the search space.

As an example, let us consider the allocation of manufacturing tasks to machines
in a factory. The search space in this case is all the possible allocations. If the goal
is to maximize production, the optimal solution might involve all machines working
nonstop. However, there might be other restrictions that need to be considered, such as
the need to stop for inspections periodically, or maximum electricity demand during peak
hours during the day. Therefore, the optimal solution will be the one that maximizes
production without violating any of the restrictions.

8 Theory Overview and Literature Review

The mathematical formulation of an optimization problem can be defined [42] as:

minimize f(x) ∈ Rm

subject to:

gi(x) < 0, i = 1, . . . , p

hi(x) = 0, i = 1, . . . , q

x ∈ Rn

(2.1)

where f(x) represents the set of m objective functions, g(x), h(x) ∈ R the equality and
inequality restriction functions and Rn the set of optimization variables.

2.3 Optimization Method Evaluation

When designing optimization algorithms, it is extremely important to consider the target
problem characteristics, the desired use case and the context in which it will work. Most
optimization problems can be divided into two main categories: one-off problems or
repetitive problems [23].

In the first case, it is enough to find a good solution only once. Thus, quality usually
takes precedence over execution time, since there is more time to solve the problem.
Besides, variance between different executions is not a big concern, as long as one of these
runs is able to find a good solution. Some examples of these problems is a university
timetable scheduling, or determining the parameters of a motor for maximum efficiency.

Repetitive problems, on the other hand, have a more challenging balance between
execution time and the quality of the results. In these problems, finding a “good enough”
solution in a short period of time is often better than taking a lot of time to achieve a
near-optimal solution. Besides, it is necessary to ensure that the variance of the method
is not too high, since the available time might not be enough to run it several times. The
route calculation on Google Maps is an example of such problem.

There are three commonly used metrics to evaluate the performance of an optimization
meta-heuristic [23]: success rate, quality of the solution (mean or best case) or efficiency
(mean number of function evaluations until a stop condition is met). Due to the stochastic
nature of these methods, evaluations should always be based on statistical tests performed
on several executions.

Theory Overview and Literature Review 9

The success rate indicates how often the method reaches the optimal value. Other
success indicators might be used when the optimal value is not known. The quality of
the solution evaluates the mean result of the algorithm given an execution limit (such as
computation time or number of functions evaluations, for example). Finally, the efficiency
measures how much time the method takes on average to find a solution that reaches a
predetermined quality criterion.

The most appropriate evaluation method depends on the problem context and the
purpose of the method. The success rate is more common in problems where the optimal
is known, or the solutions have a binary right-or-wrong nature. Fixed-time quality
evaluation is often performed when the problem has a predefined and inflexible maximum
execution time. Finally, the efficiency metric is more relevant when a determined quality
of the solution is good enough.

Each metric might be evaluated differently according to the problem. Repetitive
problems need to consider the mean and variance of the results over several executions,
while one-off problems might be more interested in the best values of all the runs. Even
the worst values reached by each method might be important to plan for worst-case
scenarios in situations where it might be critical, for example.

In performance evaluations, time metrics might not be the best way to evaluate
effort. Considering the system on which computational experiments are usually run, the
execution time might be affected by external factors such as operational system processes,
network bandwidth, etc. This might be unpredictable and introduce randomness to the
experiments. These external factors should be minimized for time experiments when
possible. An alternative solution to avoid such problems is to use computer effort metrics,
since they depend only on the algorithm and, therefore, are more consistent. However, it
is still important to also register the time, as it is extremely relevant for any real world
application.

Often the number of evaluations of the objective function is used as a computational
effort metric. This metric is appropriate for methods in which the other steps of the
algorithm are trivially cheap compared with the function evaluation. If that is not the
case, the metric might be misleading, e.g. for a method that uses a repair function
costlier than the objective function evaluation.

A way to make a more complete and informative analysis is to consider the quality of
the solutions over time. It might help differentiate a method that converges quickly but

10 Theory Overview and Literature Review

has a worse convergence value from one that is slower but better after some time, such
as shown in Figure 2.1. The choice of algorithm in this case depends on the use case.

Figure 2.1: Quality over time for two optimization methods (source: [23]).

Finally, it is important to consider other problem characteristics that might affect
the results. Different methods might have different behaviours according to the size of
the problem, for example. Figure 2.2 depicts a situation like this, in which a method is
faster for smaller problems but slower for bigger ones. In situations like this, it might be
a good choice to use each method in the most appropriate situation.

Figure 2.2: Comparison of two algorithms considering the average number of steps until
reaching a solution versus the problem size (source: [23]).

Theory Overview and Literature Review 11

2.4 Optimization Methods

Many practical optimization problems are NP or NP-hard. This means that there are no
known deterministic algorithm that can solve them in polynomial time. Therefore, the
exact solution is often unattainable in reasonable time.

In order to circumvent this obstacle, heuristics and meta-heuristics are used for
optimization. While these methods do not guarantee convergence to the global optimum,
they tend to reach good solutions in reasonable time, and are used to solve many real
world problems [30].

2.4.1 Ant Colony Optimization

Ant Colony Optimization (ACO) is a populational meta-heuristic very commonly used to
solve complex combinatorial problems [21]. It is based on the behavior of ants foraging
food for the colony. As an ant walks through a path, it leaves behind a trail of pheromones
which serves a signal to attract other ants. Trails that lead to close food sources are
more often walked through, so the pheromone trail becomes stronger.

The algorithm works in a similar way. A set of artificial agents (the ants) explore
the search space building solutions step-by-step. At each point of the way, the agent
chooses the next solution component based on probabilities determined by a “pheromone
value” and heuristic information. After each solution is built, the pheromone value of its
components is updated based on the quality of the solution.

The general structure of an ACO algorithm [30] is:

initializePheromoneMatrix ()
while(not_termination)

generateSolutions ()
daemonActions ()
updatePheronomones ()

end while

Initialization The pheromone matrix is initialized with values τ0 for each component.

Solution Generation Each agent starts with an empty solution and, step-by-step,
adds a new feasible component to its solution. The components are chosen with probability,

12 Theory Overview and Literature Review

usually defined by the following distribution [20]:

p(ci|sp) =
ταi .[η(ci)]

β∑
cj∈N(sp)

ταj .[η(cj)]
β
, ∀ci ∈ N(sp), (2.2)

where ci is the solution component evaluated, N(sp) is the set of all feasible components
for the partial solution sp, τi the pheromone value of component ci and η(ci) the heuristic
evaluation function for component ci. The parameters α and β balance the influence of
heuristic and pheromones values on the probability.

Daemon Actions Daemon Actions might refer to central or problem specific actions
that might help refining the solutions. A common step is performing local search on the
solutions found [21].

Pheromone Update The pheromone value of a solution component influences the
probability of it being chosen at the solution generation step. This mechanism helps
differentiate the best components that lead to good solutions. To do so, the pheromone
value for a component is updated based on the quality of the solutions using it. This
update follows Equation 2.3:

τi ← (1− ρ)τi +
∑

s∈Supd|ci∈s

g(s), (2.3)

where Supd is the set of generated solutions, ρ ∈ (0, 1] the evaporation rate parameter
and g(s) the quality function for the solution.

There are several other variations for ACO, such as the use of elitism [19], solutions
rankings that regulate the pheromone deposit rate [9], limits for minimum and maximum
pheromone values [44] and more.

2.4.2 Local Search

Local Search (also known as Hill Climbing or Descent) is one of the oldest and simplest
heuristics [48]. It starts from a given solution and search for a better one among its

Theory Overview and Literature Review 13

neighbors. This iterative procedure continues until no better neighbor is found, meaning
that a local optimum has been found. The general algorithm is:

s = generateInitialSolution ()
while(True):

N = generateNeighbors(s)
s’ = selectBetterNeighbor(N, s)
if s’ == null:

return s
else:

s = s’
end while

Local Search can be seen as iterative steps descending in a graph representing the
search space (Figure 2.3). It will always converge to a local optimum defined by its
neighborhood structure.

Figure 2.3: Local Search representation in a single objective continuous problem (source: [48]).

The main elements of a Local Search algorithm are the neighborhood structure and
the selection strategy. The neighborhood structure refers to the method used to determine
what are the neighbors of a given solution. It is particular to each problem and its
data representation. In continuous, univariate problem such as the one represented in
Figure 2.3, the neighbors for a solution x might be the set (x+ ∆, x−∆), where ∆ is a
previously defined variation. For a Travelling Salesman Problem, a neighborhood of a
solution can be defined as any solution obtained by swapping the order of any two cities
in the itinerary while leaving the others in the same order.

It is important to note that the same problem can have different neighborhood
structures. In the TSP case, for example, another possibility is to get any solution

14 Theory Overview and Literature Review

that swaps the order of any three cities. The structure chosen impacts the size of the
neighborhood and the search space connectivity, which have a big impact on the results.

Once the neighbors of a solution are known, the next step is to select which one will
be chosen for the next iteration. This is where the selection strategy comes into play.
Some common strategies are:

• Best improvement: Among all neighbors, the one that improves the most the
objective value is selected. This method requires the whole neighborhood to be
evaluated, which can be time consuming
• First improvement: The first improving neighbor in relation to the current
solution is selected. This strategy does not require a complete evaluation of the
neighborhood, except in the worst case.
• Random selection: Among all neighbors that improve the current solution, one

is selected randomly.

In many applications, the first improvement strategy leads to the faster computation
times without affecting the quality, although not in all cases.

Although the Local Search method is usually very fast and simple, its main disadvan-
tage is that it always converges to a local optimum. There are many other neighborhood
based heuristics that try to overcome this shortcoming. They can be structured in
different families according to the strategy used to escape local optima:

• Change the initial solution: Iterative Local Search, GRASP
• Accept non-improving neighbors: Tabu Search, Simulated Annealing
• Change the evaluation function or the input data: Guided Local Search,

Smoothing method, Noise methods
• Change the neighborhood structure: Variable Neighborhood Search (VNS)

2.5 Multi-objective Optimization

Real-world optimization problems often have more than one goal. Minimizing cost and
maximizing productivity in an assembly line, reducing the size and increasing a motor
efficiency, minimizing delivery time and fuel consumption for a delivery service, etc. In
these types of problems, the objectives might be conflicting between each other. For such

Theory Overview and Literature Review 15

cases, it is best to find a set of diverse solutions with good results for all the objectives,
so the trade-off among them can be pictured and a choice made.

One way to solve a multi-objective problem is to transform it into a single-objective
one and solve it, with an approach called A Priori Preference Articulation. These
methods use a weighted combination of each objective function to create a single one
that contains information about all the criteria [13] [15]. However, this type of approach
requires the user to determine the relative importance of each objective before the set
of solutions is known. This uninformed decision might lead to worse results. A Posteri
Preference Articulation methods do not need this kind of previous decision, which makes
them more general.

2.5.1 Dominance and the Pareto Frontier

A dominant solution is one that, compared to another, has better or equal quality values
for all the criteria considered, and is better for at least one. Considering a as the array
of quality values for a solution A for all m criteria in a minimization problem, and � the
symbol that represents dominance, A � B is formalized as:

A � B ⇐⇒ ∀i ∈ {1, ...,m} ai ≤ bi ∧ ∃i ∈ {1, ...,m} | ai < bi

For problems where the objectives are conflicting, there might not exist a single best
solution that dominates all others. A non-dominated solution is one that is not dominated
by any other. The set of non-dominated solutions evaluated in the objective space is
called Pareto Frontier, represented on Figure 2.4. These solutions cannot be improved
for a single criteria without getting worse for another. The goal for a multi-objective
algorithm is finding all (or a representative set of) the solutions on the Pareto Frontier
so that one of them can be chosen as the final solution afterwards.

The Dominance Rank of a solution is defined as the number of other solutions that
dominate it. The solutions that belong to the Pareto Frontier have dominance rank
equal to zero. This ranking can be used as measure of quality for a solution and even be
incorporated to the objective function [32].

16 Theory Overview and Literature Review

Figure 2.4: Pareto Frontier of a two objective optimization problem

2.5.2 Diversity Preservation for Multi-objective Problems

In many optimization problems, it is not possible to find all the Pareto solutions in
reasonable time. In such cases, it is desirable not only to find as many solutions as
possible, but also to find diverse solutions that are distributed for all regions of the
frontier. This way, the possible solutions are well approximated, even if not all of them
are known.

There are several methods to try and make the solutions found more diverse and avoid
concentration in a region in the frontier. One of these methods is using Crowding Distance
metric as another criterion to evaluate the solutions found. This metric represents how
distant is the solution from its closest neighbors on the objective space. This value is
determined by the area of a rectangle defined by its neighboring solutions. The higher
the crowding distance value of a solution, the higher its distance is from others, which
indicates high diversity.

Theory Overview and Literature Review 17

Figure 2.5: Crowding Distance of a solution in a two objective problem

2.5.3 Multi-objective Ant Colony Optimization (MOACO)

[28] and [2] review several multi-objective approaches for the Ant Colony Optimization
algorithm, and a taxonomy is presented to classify different methods according to their
characteristics. The categories defined in [2] are briefly discussed below.

Pheromone Matrix It might be single or multiple. In the first case, there is a single
matrix and a single pheromone value for each solution component. The alternative is
having multiple matrices, one for each objective. This second approach usually results
in more exploration (as opposed to exploitation) of solutions and is beneficial to find a
more diverse set of solutions.

Solution Generation In an ACO algorithm, solutions are built through an iterative
process based on heuristic and pheromones values of each component. For multi-objective
problems, this process can happen in three different ways: (a) directed, using information
about only one objective; (b) fixed, using a combination of information regarding all the
criteria, balanced by a priori defined weights; and (c) dynamic, using information of all
criteria combined with weights that change during the execution, or even differ from
ant to ant, in a way that directs the algorithm to explore different regions of the Pareto
frontier.

18 Theory Overview and Literature Review

The dynamic method is useful on problems where the Pareto frontier characteristics
are not previously known, which makes it hard to define weights. It favors a balanced
distribution of solutions across the whole Pareto front [28]. In such cases, an expanded
version of the random proportional equation might be used. A generic form is presented
in Equation (2.4), where N(sp) represents the set of feasible components for the partial
solution sp, ci ∈ N(sp) represents a component of the N(sp) set, L is the number of
pheromone matrices, τ li is the pheromone value for component ci in the l-th matrix, M is
the number of heuristic functions used and ηmi is the m-th heuristic values for component
ci.

p(ci|sp) =

∏L
l=1(τ

l
i)
αl .

∏M
m=1(η

m
i)βm∑

cj∈N(sp)
(
∏L

l=1(τ
l
j)
αl .

∏M
m=1(η

m
j)βm)

, ∀ci ∈ N(sp), (2.4)

Solution Evaluation Solutions might be evaluated in two ways: based on their
dominance rank or, in a more traditional fashion, according to their value for each
objective. Additional evaluation metrics (such as crowding distance) might be used in a
complementary way to any of the two main evaluation methods.

Pheromone Update The update of the pheromone values might happen in an indi-
vidual way, affecting only one solution matrix for each solution found, or in a global
way, updating all the matrices. This decision is usually tied to the solution generation
method, that might use a single matrix or a combination of them all. The update follows
the Equation:

τ li ← (1− ρ)τ li + γ
∑

s∈Supd|cij∈s

gl(s) (2.5)

where l is the pheromone matrix index, Supd is the set of solutions generated in current
iteration, ρ ∈ (0, 1] the evaporation rate parameter, γ the pheromone deposit rate
parameter and gl(s) the quality function that evaluates solution s considering criterion l.

Pareto Archival After each cycle of an ACO algorithm, a daemon action might be
used to store the best solutions (current Pareto set estimated) found so far. This storage

Theory Overview and Literature Review 19

might occur as an offline storage, which simply saves and updates the best solutions found
so far in a hall of fame fashion, but does not use these solutions in any way. Alternatively,
online storage approaches keep the same set saved, but uses this information during other
steps of the cycle (usually in the pheromone update step). Other approaches include
keeping a single elite solution or keeping none and simply returning as the final solutions
the set obtained after the last cycle.

An important consideration here is that saving the best solutions and keeping the set
of Pareto-approximation updated incurs in an additional computational overhead, as the
set needs to be reevaluated after each cycle when new solutions are obtained [59], [58].
For problems with higher sets and dimension, this cost might be significant.

2.5.4 Multi-objective Evolutionary Algorithm Based on

Decomposition (MOEA/D)

The Multi-objective Evolutionary Algorithm Based on Decomposition (MOEA/D) [41] is
a relatively recent multiobjective optimization framework. It proposes decomposing a
multiobjective problem into N scalar optimization sub-problems and optimizing them
simultaneously.

The objective function of a sub-problem is a weighted aggregation of the original
problem objectives. Two common approaches for decomposition are the Weighted and
Tchebycheff methods. On the first one, a scalar sub-problem is given by:

minimize g(x|λ) =
m∑
i=1

λifi(x) (2.6)

where λ = (λ1, ..., λm) is the weight vector for a problem with m objectives, with
λi ≥ 0 ∀i ∈ (1, ...,m) and

∑m
i=1 λi = 1. If the optimal Pareto Front is convex,

generating N weight vectors equally distributed through the objective space works well.
In other situations, other approaches might be necessary.

The Tchebycheff approach decomposes problems based on the following equation:

20 Theory Overview and Literature Review

minimize g(x|λ, z∗) = max
1≤i≤m

(λi(fi(x)− z∗i)) (2.7)

where z∗ = (z∗1 , ..., z
∗
m) is the reference point defined by z∗i = min (fi(x)|x ∈ Ω) ∀i ∈

(1, ...,m) .

Each sub-problem optimization uses information of its neighboring sub-problems.
The neighbourhood structure is defined based on the closeness of the aggregation weight
vectors. The size T of the neighborhood is an input parameter of the method.

The general framework for the MOEA/D method initializes by decomposing the
original problem using any decomposition technique, defining the neighbors of each
sub-problem and an initial population. Then, the algorithm iterates until a previously
defined stop criterion is reached. In each iteration, a new solution is generated for each
sub-problem using a genetic operator and two solutions from the neighborhood, randomly
selected. After that, for each neighbor sub-problem, replace its solution with the new
generated one if it is better regarding that sub-objective. An external Pareto set is then
updated if needed.

The MOEA/D framework has been successfully applied to many areas and is specially
adequate for many-objective problems. There are several improvements for it, but
the general framework usually stays the same. A thorough review on decomposition
based methods is presented in [53], presenting many variations and their impact on the
framework.

2.5.5 MOEA/D-ACO

The MOEA/D-ACO method [36] is a multiobjective evolutionary algorithm based on the
combination of Ant Colony Optimization (ACO) and MOEA/D methods. This approach
combines the decomposition into sub-problems, characteristic from MOEA/D, with the
ACO framework.

The first step of the method is the decomposition of the main problem into N sub-
problems, using either the weighted or Tchebycheff method. Each resulting weight vector
is assigned to an ant, which also keeps a corresponding heuristic information matrix.

Theory Overview and Literature Review 21

After that, all ants are divided into K groups by clustering the weight vectors.
Each group shares a pheromone matrix. In addition to the groups, each ant has a
neighborhood defined by the ants with the T closest weight vectors (including itself).
Thus, the neighbors are not necessarily in the same groups.

The algorithm then follows the traditional ACO framework. The pheromone and
heuristic matrices are initialized and, at each iteration, every ant builds a solution. In
the solution construction step, in addition to using its own heuristic matrix and its
group’s pheromone matrix, the ant also uses the solution of its neighbors in the process.
Solution components present in a neighbor current solution is favored in the probability
calculation.

After each ant generates a new solution, they are used to update the corresponding
pheromone matrices and an external archive of non dominated solutions is updated. Only
non dominated solutions are used to update the pheromone matrix.

Finally, every ant updates its own solution. A new solution is chosen among all
solution generated by the ant’s neighbors if the new solution has a better objective
value for that ant’s sub-problem and it is not used by any other neighbor. This process
continues until the stop criterion is met.

The main advantage of this method in comparison to the regular ACO is that, due to
the decomposition and separate pheromone matrices, different ants focus on different
areas of the Pareto Front, which increases solution diversity and favors exploration of the
search space. The simplified single-objective sub-problems also improve the computational
times at each step.

2.5.6 Hybrid Meta-heuristics and Two-Phase Pareto Local

Search

Hybrid meta-heuristics are methods that combine two or more meta-heuristics, or even
other optimization approaches. For many real-life or classical optimization problems,
the best solutions are obtained with hybrid algorithms [47]. There are many types of
combinations [48] and implementation approaches that should take into account the
problem and environments characteristics.

These hybridization techniques try to combine the strengths of each algorithm in
order to improve the overall performance and quality. Although the No Free Lunch

22 Theory Overview and Literature Review

theorems [54] state that generalist black-box algorithms tend to have the same overall
performance over the entire set of optimization problems, a particular approach can still
be better for a specific problem.

The Two-Phase Pareto Local Search is a hybrid approach for multiobjective problems,
such as bi-objective TSP [39]. The method uses a two-step approach. On the first one,
an algorithm is applied to generate an initial set of solutions. In the second step, Pareto
Local Search is applied to each solution, refining the results obtained on the first method.
The initial step favors exploration of the Pareto Front, while the second exploits and
improves the solutions found.

2.5.7 Performance Metrics for Multiobjective Problems

For single objective optimization problems, the performance of a metric is easily evaluated
by the quality of the solution found. For multiobjective problems, there is not a single
solution as result, but a set of them, so it is not possible to use the same method.

Some common methods for these problems are Hypervolume [58] and Epsilon indicator
[57]. The first one calculates the hypervolume defined by a set of solutions and a fixed
reference point in the objective space. The bigger the hypervolume, the better the
solution set, and the Pareto optimal set has the best hypervolume possible for a problem.
The Epsilon metric is based on the comparison of a solution set with an ideal reference
set. It evaluates the change rate needed so that the evaluated solution set is no longer
dominated by the reference set, and lower rates have better scores.

These methods, however, require some knowledge of the Pareto frontier. The Summary
Attainment Surface method proposed in [26] has as its main advantage over other methods
its independence of problem specific knowledge. It is based on the distribution of the
solutions on the obtained approximated Pareto set and statistical methods.

Still, the hypervolume method is among the most used performance metrics. Besides
having good results, it is very simple and intuitive method. Figure 2.6 shows hypervolume
for a two objective problem.

As it can be seen, the closer the evaluated set is to the Pareto frontier, the higher the
hypervolume will be.

Theory Overview and Literature Review 23

Figure 2.6: Hypervolume evaluated for a set of solutions in a two objective problem (adapted
from [37])

2.6 Hyperparameter Selection

Optimization meta-heuristics have many hyperparameters that regulate them. They
might be numerical (e.g. pheromone evaporation rate or number of ants in a ACO) or
symbolic (daemon actions used). These parameters have a significant impact on the
algorithm’s performance, which makes their choice an important decision.

Performance evaluation methods presented on Section 2.3 can be used to help deter-
mining the set of hyperparameters that lead to the best result for the desired use case. It
is important to note that many parameters are interdependent. As a consequence, it is
not possible to tune one parameter at a time since their interactions need to be evaluated
[48].

However, most methods have a significant number of parameters, many of which have
many possible values. In order to fully evaluate the parameters effects, there should
be performed experiments with all possible combinations. This leads, however, to a
unfeasible number of experiments. For a problem with n parameters with k levels, nk

experiments would be necessary.

The fact that many meta-heuristics methods are stochastic makes the situation even
more challenging. In order to obtain statistically significant results, many runs of the

24 Theory Overview and Literature Review

same experiments need to be performed, which increases even more the number of
executions required.

One alternative to reduce this number is to use fractional factorial designs, in which
the number of experiments necessary is greatly reduced. However, even this approach
might be unfeasible for methods with many parameters and levels.

Another approach is to treat the search for a good set of hyperparameters for an
optimization method as another optimization problem itself. Thus, this problem would be
solved with another optimization algorithm. There are several methods in the literature
that focus on this very issue [22] and [24]. However, this approach can also be very
computationally expensive.

In situations where the complexity of the original optimization problem makes it hard
to perform a complete hyperparameter optimization, compromises are necessary. In such
cases, smaller statistical studies of the effect of each hyperparameter can be performed to
identify the most important ones to focus on, as well as to have a better understanding
of their effects on the method.

2.7 Decision Support Methods

Multi-objective optimization methods produce a set of solutions as result, instead of a
single solution. These solutions are non-dominated, which means that they all present
trade-offs in relation to each other and the objectives. However, for real-world applications,
only one solution can be applied. Choosing one among many is challenging for the final
users, specially when the number of solutions is high.

Decision support methods aim to help the user sort the final solutions according to
their preferences and select one. These methods depend on the set criteria that are
important to the decision maker, and can be either deterministic, stochastic or fuzzy [51].
They can also be for a single decision maker or a group.

Methods based on numerical analysis of the alternatives require first of all that the set
of relevant criteria C = (C1, ..., Cn) are defined. After that, it is necessary to attribute
to each of the m alternative solutions a numerical value for each criteria: aij ∀i ∈
(1, ...,m), j ∈ (1, ..., n), aggregated in matrix A. A weight vector w = (w1, ..., wn) for
the set of criteria is also defined. It is important that all values are attributed within the
same scale.

Theory Overview and Literature Review 25

Finally, these numerical values are processed and a scalar score value is attributed to
each alternative. A rank for the solutions is produced based on this score. Each method
employs different processing techniques.

One of the most common approaches is the Weighted Sum Model (WSM). It attributes
to each alternative a score Si defined by Equation 2.8, where aij is the value of the i-th
alternative in terms of the j-th criterion and wj is the weight of the j-th criterion. The
ranking is created based on the descending order of scores. This method is one of the
simplest ones and is based on the additive utility assumption.

Si =
n∑
j=1

aijwj (2.8)

A variation of the WSM approach is the Weighted Product Model (WPM). This
method evaluates the product of the relative value of each pair of alternatives i, k ∈
(1, ...,m), for each criteria. The main advantage of this method compared to WSM is
that the values considered are dimensionless, since only the ratio is considered. The score
attributed to each alternative Ai is given by:

Si =
m∑

k=1,k 6=i

n∏
j=1

(aij/akj)
wj (2.9)

Other methods include AHP, ELECTRE, TOPSIS and PROMETHEE (and their
variations). They are a bit more complex and some require pairwise comparisons, which
require more input from the decision maker and might not be adequate for cases with
many alternatives. For a bi-criteria case, WSM and WPM are adequate and very simple
for the end user. Besides, they can be easily tweaked by changing the criteria weights.

2.8 Summary

This chapter presents a review of the main concepts and methods used in this work
and presents an overview of trip planning literature works. These concepts include
optimization concepts, Ant Colony Optimization and Local Search methods, Multi-

26 Theory Overview and Literature Review

objective concepts and methods (MOACO, MOEA/D, MOEA/D-ACO), hyperparameter
selection and Decision Support methods.

Next chapter presents the methods used for the solution of the trip planing problem
presents, including modeling of the problem, data gathering and generation, optimization
methods and decision support methods, applying the concepts presented here.

Chapter 3

Methodology

The trip planning problem presented in Chapter 1 consists in helping a traveller find
the accommodations and flights for a trip that minimize the cost and travel time. This
chapter presents in detail the methods used to solve this problem and each step of the
solution, covering the mathematical modeling, the data gathering, the optimization
algorithms and the decision support steps.

3.1 Problem Representation

The first step to solve any problem is to gather information and clearly define it. In
order to do so, it is necessary to gather user input. Only after they have clearly defined
the trip they want the system can start to optimize it. One of the goals of this work is
to let the users have as much flexibility as possible to define their trip. Therefore, the
system lets them define:

• The set of destinations to be visited;
• The length of the stay in each of them, with liberty to define minimum and maximum

days, required date ranges to be in the destination and the order of it in the trip
• The departing destination (and, optionally, returning);
• The minimum and maximum desired dates to start and finish the trip;
• Transportation restrictions, such as company, class and preferred flight hours during

the day;
• Accommodation restrictions, such as type, location and category.

This section proposes a data representation and mathematical model for the problem.

27

28 Methodology

3.1.1 Data Structure

This section defines how the problem data is structured for the optimization. This data
is divided between user inputs and solutions components (flights and accommodations
information gathered).

User Inputs

Starting Destination: Starting destination of the trip.

Departure Dates: Date interval (date_min, date_max) in which the trip must begin.

Arrival Dates: Date interval (date_min, date_max) in which the trip must end.

Destinations (D): Set of the k destinations to be visited on the trip. Each destination
represents a city.

D = {D1, . . . , Dk}

Each Di ∈D is a structure with the following information:

• id: unique identifier for each destination.
• stay_length: interval of integers (stay_min, stay_max) that represents the desired

stay length (in days) for destination Di.
• date_interval: interval of dates (date1, date2) in which the traveler must be in

destination Di. Optional input.
• order: integer in the interval [1, k] that the determines the order in which destina-
tion Di must be visited in the trip (e.g. destination_order = k indicates that the
destination must be the last one visited). Optional input.
• accommodation: boolean that indicates if an accommodation is necessary for

destination Di in the trip. Defaults to True.

The notation Xi.property is used to represent an attribute of structure i (e.g. Di.stay_length

indicates the stay length interval for destination Di).

Round Trip: Boolean that represents if the trip should end back in the initial destina-
tion. Defaults to True.

Methodology 29

Transportation Restrictions (RT): Structure with optional transportation related
restrictions:

• type: types of desired flights (i.e. first class, business, economic).
• hours: time interval in which flights should not depart (e.g. (23:00, 05:00) indicates
that flights that depart between 23pm and 5am should not be considered valid
options for the trip plan).
• companies: set of flight companies that should not be included in the search.

Accommodation Restrictions (RA): Structure with optional accommodation re-
lated restrictions:

• type: set of acceptable accommodation types for the trip (e.g. hotel, hostel, Airbnb,
etc.).
• location: set of regions (defined by geographic coordinates and radius from center)

in which accommodations must be located.

Solution Components

Solution components for the problem are flights (transportations) and accommodations
from which proposed trip itineraries (the problem solutions) are built.

Transportations (T): Set off all transportation options between destinations of set
D. Each Ti ∈ T is an structure with the following properties:

• id: unique identifier.
• type: transportation category (e.g. first class flight, business flight, etc.).
• cost: total cost of the ticket.
• departure_destination: id of the destination from which the flight departs from.
• arrival_destination: id of the destination where the flight arrives.
• departure_time: departure date and time.
• arrival_time: arrival date and time.
• company: flight company.
• departure_location: information about the departure location.
• arrival_location: information about the arrival location.

30 Methodology

Accommodations (A): Set off all accommodation options for destinations of set D.
Each Ai ∈ A is an structure with the following properties:

• id: unique identifier.
• name: name of the accommodation.
• type: accommodation type (e.g. hotel, hostel, etc.).
• cost: total cost for all days.
• destination: id of the destination where the accommodation is located.
• date: date interval for the accommodation.
• checkin_time: check-in time in the accommodation.
• checkout_time: check-out time in the accommodation.
• location: information about the accommodation location.

3.1.2 Solution Structure

In the trip planning problem presented, the goal is to find itineraries that minimize the
cost and travel time. Any itinerary that is a possible solution for the problem consists of
a set of flights that ensure each destination is visited and an accommodation for each of
them, respecting user inputs and restrictions. Thus, a solution s can be represented by a
list of alternated transportation options and accommodation options. For k destinations,
that would be:

s = (T1, A1, T2, A2, . . . , Tk, Ak, Tk+1) (3.1)

(considering accommodations for all destinations and a round trip).

3.1.3 Objective Functions

Each proposed itinerary (a solution s) must be evaluated considering the optimization
problem criteria: cost and travel time. The functions that take a solution as input and
return its value for each criterion are called objective functions and defined as:

Methodology 31

Cost

Defined simply as the sum of costs of all transportations and accommodations of the
solution.

F1(s) =
k+1∑
i=1

Ti.cost +
k∑
j=1

Aj.cost (3.2)

Travel Time

The travel time is only affected by the transportations. It considers the sum of the
difference between the departure and arrival times for each flight, converted to seconds.

F2(s) =
k+1∑
i=1

Ti.arrival_time − Ti.departure_time (3.3)

There are some not accounted factors that might affect travel time besides the flights
duration. A significant one is the distance between the airports and the accommodation
in the destinations. Some airports, for example, are located very far from the most
touristic areas in cities, and the time to reach the airport might have an impact in the
total travel time.

This time could be estimated based on the locations of accommodations and airports,
using API’s such as Google Maps or similar alternatives. However, searching for estimated
times between each pair of accommodations and flights would not be practical, given the
number of requests needed and the time it would take.

A possible alternative is estimating the travel time between absolute distance, disre-
garding traffic and routes between hotels and airports. However, this could distort the
results and make them inaccurate and even misleading. In the end, it could bring more
harm than good.

Finally, a third possibility is keeping a database of distance between airports and city
regions for the most sought after destinations. This could reduce the computational time
needed to estimate the accommodation-airport travel times and still provide good approx-
imations. However, implementing this solution would be time-consuming and the returns
with little significance. Thus, the travel time between airports and accommodations are
not considered in the proposed solution.

32 Methodology

3.1.4 Problem Restrictions

A solution s = (T1, A1, T2, A2, . . . , Tk, Ak, Tk+1) is not valid for any combinations of
transportations and accommodation options. It is necessary to ensure that they are
feasible and respect the restrictions of the defined problem, such as visiting all destinations
exactly once, or that there accommodations selected for each day of the trip in the correct
destinations and dates.

These feasibility checks are defined in this subsection. SetR contains all these solution
restrictions.

Destinations visited: Ensures that each destination is visited exactly once on the
itinerary.

k⋃
i=1

Ai.destination =
k+1⋃
i=2

Ti.arrival_destination =
k⋃
i=1

Ti.departure_destination =
k⋃
i=1

Di.id (3.4)

Destinations connections: Ensures that there are arrival and departure transporta-
tions for each destination and that they are correctly ordered.

Ti.departure_destination = Ti+1.arrival_destination ∀i ∈ {1, . . . , k} (3.5)

Accommodations: Checks if there is an accommodation for each destination and that
they are correctly ordered.

Ai.destination = Ti.arrival_destination ∀i ∈ {1, . . . , k} (3.6)

Stay length: Ensures that the stay length in each destination respects the user defined
limits, checking arrival and departure dates for transportations and accommodations
dates.Di.id = Ti.arrival_destination ⇒ (Ti+1.departure_time − Ti.arrival_time).days ∈ Di.stay_length

Di.id = Ai.destination ⇒ Ai.date ⊆ Di.stay_length

(3.7)

∀i ∈ {1, . . . , k}

Methodology 33

Accommodation dates: Checks if the date interval for each destination’s accommo-
dation is the same as the interval between arrival and departure dates for this destination.Ai.destination = Ti.departure_destination ⇒ Ai.date_end = Ti.departure_date

Ai.destination = Ti.arrival_destination ⇒ Ai.date_start = Ti.arrival_date
(3.8)

Destination date interval: Checks that the stay dates in each destination is within
its defined date interval.

Di.date_interval 6= ∅ ⇒

Ai.date ⊆ Di.date_interval

(Ti.arrival_time ∪ Ti+1.departure_time) ⊆ Di.date_interval

(3.9)

∀i ∈ {1, . . . , k}

Destination order: Checks destinations ordering according to user specifications

Di.order 6= ∅ ⇒ Di.order = i ∀i ∈ {1, . . . , k} (3.10)

The accommodation and transportation restrictions sets (RA and RT) are not treated
as optimization restrictions. Instead, they are used beforehand to filter the transportations
and accommodations sets T and A), right after the data gathering step.

3.1.5 Search Space

The search space for an optimization problem is the set of all existing solutions. Con-
sidering the solution structure proposed in (3.1) and the sets of transportation and
accommodation options T and A, it is possible to represent the search space for the trip
planning problem as a graph. In this representation, the graph’s edges are solution com-
ponents (transportation and accommodation options), while the nodes are destinations.
If all the edges are added in a way that respects all restrictions in R, the graph can be
guaranteed to contain only feasible solutions.

Figure 3.1 shows a search space graph for a 2-destination trip containing only feasible
solutions. The t-edges represent transportation between two destinations, while a-edges
represent accommodations. The graph assumes a tree topology, and any path starting
from the origin node (the starting destination) to a leaf node on the graph represents a

34 Methodology

solution. If the cost and travel times are added to the edges, the optimization problem
becomes a graph search one.

Figure 3.1: Feasible solutions search space graph for a 2 destinations unordered trip

This visualization also helps estimate the size of the feasible search space S. Taking k
as the number of destinations on the trip, p the average number of feasible transportation
options between any two destinations and q the average number of feasible accommodation
options in a destination, it is possible to estimate the number of feasible solutions (i.e.
the search space size |S|) as:

|S| = (k)! pk+1 qk (3.11)

It is also possible to evaluate the size of the complete search space (which includes
unfeasible solutions). To do so, the same equation applies, but using the total number
of transportation options (|T |) as p and the total number of accommodation options
(|A|) as q. This would result in a much bigger search space, as |T | and |A| are orders
of magnitude higher than p and q. This fact makes optimization methods that can
be restrained to the feasible search space and avoid unfeasible solutions preferred over
others.

Methodology 35

3.2 Data Gathering, Processing and Generation

3.2.1 Data Source

In any optimization problem, the information available to use is a key factor that restricts
the quality of the solutions reached. The problem data determines the search space,
which in turn determines the limits of all solutions that can be reached. Thus, using
wrong or incomplete data can be harmful to the quality of the final solutions. The
solution can only be as good as the information available. Thus, data gathering is a key
step to solve an optimization problem.

For the trip itinerary optimization problem, the data set should have information
about all possible accommodations in the desired destinations and flights between them.
This information, however, is not so accessible.

The first obstacle is fragmentation. There is no single source with information about
all these flights and hotels. Each flight and accommodation company usually has its own
website with a selling or reservations system. Luckily, there are websites and services
specialized in aggregating this information. For flights, some of the main ones are
Skyscanner, Expedia or Decolar.com. As for accommodations, Expedia, booking.com
and Trivago are among the best platforms.

Even so, having access to this data on demand is not that easy. While many sources
do have the necessary information, they are not open for anyone. Access is usually
restricted to business partners and paying customers. While some websites offer some
sort of trial access to developers, the evaluation process is slow and the access is usually
restricted.

Web crawlers could be a alternative to get this information, scrapping it directly from
flights and hotels websites. However, due to the high number of different data sources,
the task is complex and beyond the scope of this work.

As of yet, it was only possible to get a limited access to Skyscanner’s API. However,
restrictions regarding the number of requests and the information available makes it
impossible to use this in real world, practical situations. Some data was gathered through
their API to create test cases, but real-time integration was not possible.

In order to be able to test the proposed optimization system, an alternative method
was necessary. A Random Information Generator was created, simulating queries to these

36 Methodology

APIs. It receives as input a request for flights and accommodations info and, based on
the request, created random mock-up data, which is then returned to the optimization
problem. From the optimizer point of view, it makes no difference. This system makes it
possible to test for different trips and itineraries configurations anytime, without need to
gather the information elsewhere.

Although the lack of real data invalidates the proposed system for real-world use,
the method development was not affected by it. The search space structure remains
the same, and, therefore, the optimization method used on the mock-up data is also
applicable to real data without any change. The Random Information Generator can be
replaced anytime for a data-gatherer module that is able to access real flight and hotel
data and, without any further change, the system would be able to plan real trips.

3.2.2 Data Querying

Once user inputs are gathered, it is necessary to analyze the desired trip information
and determine the data necessary to plan and optimize it. In the most general case, the
system could search for all the possible accommodations in every destination within the
maximum trip date range, and for every flight between every two pair of destinations in
the same period. However, this approach presents some problems.

First, the amount of data generated would be huge. This could slow down the
optimization methods search for feasible solution components among a set so big. Second,
querying for so much information would take a long time and could create an overhead
to the process before the optimization even begins. While this problem is smaller with
the Random Information Generator, it would be more serious if an API was used. The
elevated number of requests required would slow down the performance and could even
surpass limits of the API.

In order to avoid these issues, the system should use trip definitions and restrictions
to reduce the amount of information gathered. If the feasible date ranges for each
destination and for each flight route is determined, it is possible to eliminate unnecessary
requests and trim down the number of queries performed. As an example, let us consider
a situation where a user defines that a hypothetical Destination 1 should be the first one
visited and that its stay length should be no more than 5 days. In this case, it is not
necessary to search for any flight or accommodation information related to Destination 1

Methodology 37

beyond the fifth day of the trip. This sort of analysis can drastically reduce the amount
of data requested and speed up the system.

One way to determine the necessary requests is to calculate exactly all the possible
destinations permutations and dates, based on the trip restrictions. After that, each
destination would have a range of possible dates in which it could be placed in the itinerary,
and only information within this range would be queried. However, the computational
complexity of this method is in the order of O(n!) for the number of destinations. For
trips with 7 or 8 destinations, for example, the number of permutations is already in
the order of thousands. In such cases, this verification process becomes too costly and
creates a big overhead. Thus, it solves the costly queries problem but creates a new one.

Another method was proposed to reduce the queries and the data gathered, but with
a smaller complexity. This method uses the same principle: based on trip definitions and
restrictions, determine the range of possible dates for each destination and restrict the
query to those dates. However, it trades exactness for efficiency. Each destination’s date
range calculated is not guaranteed to be the minimum possible range for the destination,
but they can be calculated in reasonable time and still greatly reduce the number of
queries.

Finally, there is a final, complementary method used to reduce the number of queries
performed. All recent queries are stored in a database in the system, together with their
return value. If a repeated query is performed in a short period of time, the information
stored on the database is used instead, avoiding repetition and speeding up the return.
While this solution is not impactful under the current system structure, it might be very
useful for cases with several simultaneous users. In such cases, the number of repeated
queries might be high and the proposed method would greatly reduce the number of API
requests.

3.2.3 Search Space Reduction

Once the data queries are defined and the data is gathered (or randomly generated), the
flight and accommodation information is modelled as the structures defined is section 3.1.
Then, entries that violate any user defined accommodation or transportation restrictions
are discarded. At this point, all information required to start the optimization process is
available.

38 Methodology

Before starting the optimization, however, there is a previous data processing step
that aims to improve the efficiency of the optimization method by reducing its search
space. This is done by identifying transportation and accommodation options that will
never contribute to an optimal solution and discarding them.

This process is based on the Dominance concept presented on Section 2.5.1. A solution
component CA is strictly worse than another component CB if all of their attributes
(such as date, destination, etc.) are equal, but it has a worse value for at least one of the
optimization criteria (cost or travel time). In these cases, for any solution SA where CA
is present, there would exist a solution SB with the exact same components, except using
CB in place of CA. This solution SB would always dominate SA. Thus, eliminating
component CA from the search space would have no negative effect on the optimization
quality.

The proposed method uses this idea to reduce the search space, comparing every pair
of components of the same type and removing those that are strictly worse compared
to another (as long as the other attributes are the same). This can reduce the search
space significantly and, as a consequence, improve speed and quality in the optimization
process.

3.3 Optimization

This section covers the optimization methods used to solve the trip itinerary planning
problem. It describes the implementations choices for the chosen method (Ant Colony
Optimization), explains the reasons for this choice and covers other improvements and
variations.

3.3.1 Multiobjective Ant Colony Optimization

A Multiobjective Ant Colony Optimization framework was chosen as the baseline method
for the trip optimization problem. c Considering the taxonomy presented in (2.5.3), the
implemented method has the following characteristics:

• Multiple pheromone matrices (one for each optimization criteria). A heuristic
function for each objective is used as well.

Methodology 39

• Fixed solution generation, using predefined parameters to combine heuristic and
pheromone values for each component.
• Solution evaluation based on objective values, with dominance ranking and crowding

distance as a secondary criteria.
• Global update of pheromone matrices.
• Offline Pareto archival, with hall of fame with the t best solutions (ordered by

dominance rank) found.

The pseudo-code below is a high-level representation of the algorithm works. Each
step is described further.

initializePheromoneMatrix ()
while(not_termination)

generateSolutions ()
evaluateAndArchiveSolutions ()
daemonActions ()
updatePheronomones ()

end while

Pheromone Matrices Initialization All pheromone matrices are initialized with
predefined value τ0 for every component.

Stop Condition Two criteria are used as stop conditions, and any of them is sufficient
to trigger a stop:

1. Maximum time elapsed;
2. Number of iterations without progress. The number of new solutions added to the

offline hall of fame set is used as progress metric between iterations.

Solution Generation At each iteration, n solutions are obtained, where n is the
parameter that determines the number of ants used. As every ant is initialized with the
same parameters, this value can be seen as the batch size for the method.

Each solution is built in an iterative way, starting from an empty solution sp = ∅. At
each step, a component ci ∈ N(sp) is added to sp, where N(sp) ⊆ T ∪A is the set of
feasible components. The feasible components set includes all components that fulfill
every restriction from set R, defined in (3.1.4), considering the partial solution sp.

40 Methodology

The added component ci is chosen randomly, with probabilities for each component
defined by Equation (3.12), as presented in (2.5.3). In this equation,

p(ci|sp) =

∏L
l=1(τ

l
i)
αl .

∏M
m=1(η

m
i)βm∑

cj∈N(sp)
(
∏L

l=1(τ
l
j)
αl .

∏M
m=1(η

m
j)βm)

, ∀ci ∈ N(sp), (3.12)

Solution Evaluation and Archival After each iteration, all new solutions are evalu-
ated and compared to the set of best solutions found so far (the hall of fame). All of
them are sorted by dominance ranking, with crowding distance as a secondary ordering
criterion. The hall of fame is then updated with the t best solutions and the others are
discarded.

Pheromone Matrices Update Every value on the pheromone matrices is updated
based on the evaporation rate, which decreases the pheromone value for it. Then, for all
components used in a solution, their pheromone value in each matrix is updated based
on the solution’s quality for the respective criterion. A parameter γ was added to the
equation presented in 2.5.3 to allow further control over the pheromone deposit rate.
The pheromone update follows:

τ li ← (1− ρ)τ li + γ
∑

s∈Supd|cij∈s

gl(s) (3.13)

where l is the pheromone matrix index, Supd is the set of solutions generated in current
iteration, ρ ∈ (0, 1] the evaporation rate parameter, γ the pheromone deposit rate
parameter and gl(s) the quality function that evaluates solution s considering criterion l.

The quality values are normalized between zero and one based on a referential nadir
solution, a worst-case solution calculated for each problem. This keeps every criteria
value within the same range and ensures that their effect is the same.

3.3.2 Local-search MOACO

Local search methods are commonly used as one step of a two-phase Pareto Search, as
seen in Section 2.5.6, including applications for multiobjective TSP problems [39]. The

Methodology 41

ACO heuristic can be easily combined with other optimization methods [5]. This section
presents a hybrid ACO method with Local Search.

The proposed method keeps the same framework outlined in Section 3.3.1. The Local-
search addition is included as a daemon action, which takes place after each iteration
of the solution generation step. Each solution generated is subjected to a Pareto local
search algorithm. The search results are then evaluated and, if a new solution that
dominates the original one is found, the latter is replaced.

A 1-opt neighborhood structure was selected for the Local Search. Given a solution
s, the set of neighboring solutions N(s) contains every feasible solution that can be
obtained from s changing only one component by another component. That is:

s′ ∈ N(s) ⇐⇒ (|s′ ∩ s| = |s| − 1) ∧ (s′ ∈ S)

The Local Search method uses a first improvement strategy. After each neighbor is
generated, it is compared to the current solution. If the new solution dominates the
previous one, it is selected. This strategy speeds up the execution, although the upper
limit is unchanged. The neighbor selection algorithm framework is:

s = s0
foreach c in s:

alternativeComponents = getFeasibleComponents(s, c)
foreach c’ in alternativeComponents:

s’ = getAlternativeSolution(s, c, c’)
if(isFeasible(s’) and s.isDominated(s’)):

return s’

The neighbor selection method has a O(2k(f − 1)) complexity, where k is the number
of destinations in the trip and f is the maximum number of feasible components at each
step.

This method is necessary to guarantee that only feasible solutions are generated,
which keeps the size of the search space under control, as discussed in Section 3.1.5.
The non-trivial cost of this step is one of the reasons a smaller 1-opt neighborhood was
chosen.

The general Local Search algorithm is:

s = s0
while(True):

s’ = getImprovedNeighbor(s)

42 Methodology

if (s’== None):
return s

else:
s = s’

The hybrid meta-heuristic increases the time required for each iteration, due to
the increased computations required for each solution. However, due to the additional
exploitation from the Local Search, the convergence of the algorithm improves.

3.3.3 Distributed MOACO

The Ant Colony framework is inherently very adequate to distributed implementations
[20]. In each iteration, the solution generation step starts a loop in which each ant agents
builds a solution. There are no interaction between the processes of each ant until the
pheromone update step, in which all the solutions built are used to update the pheromone
matrices. Thus, the solution generation step is a natural candidate for parallelism.

In order to implement a distributed MOACO method, each ant process should run
as a independent thread. After each solution is built, they are added to a set. The
algorithm stays locked until all solutions are generated. After that, the daemon actions
and pheromone update steps are performed without any changes.

This method is also compatible with the hybrid Local-search MOACO meta-heuristic
proposed. The only adaptation necessary is to perform the local search for each solution in
its own thread, right after the generation step. This way, theDistributed Local-search
MOACO method is obtained as a combination from the two methods implemented.

This distributed implementation aims to make better use of hardware resources and
speed up computational times for the MOACO meta-heuristic. It should have no other
impact other than performance related ones, since there are no changes to the general
framework.

3.3.4 MOEA/D-ACO

The MOEA/D-ACO meta-heuristic, described in Section 2.5.5, aggregates strengths of
both MOEA/D and MOACO methods. The algorithm framework is very similar to
traditional MOACO methods. The main differences are on the solution construction

Methodology 43

step and on the pheromone matrices organization and update. The general structure is
presented in the pseudo-code 3.3.4. Each of the steps is then detailed, and the differences
from traditional MOACO highlighted.

initialization ()
while(not_termination)

generateSolutions ()
evaluateAndArchiveSolutions ()
daemonActions ()
updatePheronomonesAndSolutions ()

end while

Initialization Generate a set of weight vectors λi = (λ1i , ..., λ
m
i) ∀i ∈ (1, ..., n),

uniformly distributed over the objective space. The weights follow the Weighted Sum
Approach such that

∑M
m=1 λ

m
i = 1. A single optimization scalar sub-problem gi(x|λi =∑M

m=1 λ
m
i fm(x)) is created for each weight vector. Each vector and sub-problem is

attributed to an ant i. Each ant also has an heuristic matrix based on its sub-problem i.

Following this step, all n ants are split into K groups. The groups are found by
clustering the weight vectors according to their Euclidean Distance in relation to one
another. A pheromone matrix is initialized with values τ0 and attributed to each group.

A neighborhood structure is also defined. For each ant i, its neighbors N(i) are the
T ants with closest weight vectors. Neighbor ants are not always on the same group.

Solution Construction Each ant i builds a solution step-by-step. As in the traditional
MOACO framework, at each step a component is chosen for the partial solution sp among
the set of feasible ones F (sp), until it is complete. Each component has as probability
value defined by Equation 3.14:

p(cj|sp) =
[τ ij + ∆.In(si, cj)]

α.ηij
β∑

ck∈N(sp)
[τ ik + ∆.In(si, cj)]α.ηik

β
, ∀cj ∈ F (sp), (3.14)

where τ ij is the pheromone value of component cj in ant’s i pheromone matrix, ηij is the
heuristic value for component cj for ant i and α and β are pheromone and heuristic
influence modifiers. ∆ is the current solution influence modifier, which increases the

44 Methodology

probability for components that integrate ant’s i current solution si. Finally, In(si, cj) is
an indicator function defined as:

In(si, cj) =

1, if cj ∈ si
0, otherwise

At each step, there is a r probability that the component with maximum probabilistic
value is directly selected. If not, a roulette wheel selection is performed to select the next
component based on their probabilities. For all previous MOACO implementation, r = 0

and is omitted.

Evaluation and Archival No changes in this step. An external Pareto Set EP is kept
and updated with all new solutions generated.

Pheromone Update Each group’s pheromone matrix is updated following equation
3.13. Only solutions generated by the group’s ants that were added to EP are used to
update the pheromone matrices. This is a change from the MOACO implementation
defined in Section 3.3.1.

The pheromones are limited between maximum and minimum values τmax and τmin,
respectively. These values are defined as:

τmax =
B + 1

ρ.gmin(si)

where B is the number of non-dominated solutions generated in the current iteration, ρ
is the pheromone evaporation rate and gmin is the minimum value for all n sub-problems
gi. τmin = ε.τmax, where 0 < ε < 1 is a method’s hyperparameter.

These pheromone limitations is also a new addition not present in the MOACO
method.

It is interesting to note that the MOEA/D-ACO method proposed is entirely compatible
with the additions of both the Local-search MOACOmethod and the Distributed MOACO.
In the first case, the Local-search step is included as a daemon-action. In the second,
the solution construction step is also distributed to independent threads that later

Methodology 45

converge. Thus, three new methods can be obtained just from the combinations of the
proposed ones: Local-search MOEA/D-ACO, Distributed MOEA/D-ACO and
even Distributed Local-search MOEA/D-ACO.

3.3.5 Method Choice Considerations

As an application of the Traveling Salesman Problem with Time Windows with Con-
straints, the trip itinerary optimization problem proposed is, by consequence, a combina-
torial NP-complete problem. The search space estimation presented in (3.1.5) indicates
that the number of possible solutions is big and that unfeasible solutions represent the
major part of the complete search space. Thus, it is desirable to use a method that can
be restricted to the feasible search space. This way, it could avoid wasting efforts with
unfeasible solutions.

Different problem representations (and restrictions) can lead to different search
space sizes. These representations are influenced by the optimization method chosen.
Genetic algorithms, for example, need some kind of representation in which combinations
of solutions can be made to generate new solutions. In some representations, these
recombinations might result on unfeasible solutions. The graph representation suggested
in (3.1.5) can restrict the problem to the feasible region of the search space, which can
be a big advantage for this problem.

Ant Colony Optimization methods are specially adequate to complex combinatorial
problems such as the one presented, and shows interesting results for dynamic multi-
objective problems [30]. The graph representation also is very fitting to the solution
generation process. In [33], an ACO method was successfully used to solve a similar
problem.

The main advantage of this method in this for the trip planning problem is that it
can easily be restricted to the feasible search spaces and avoid invalid solutions. Due to
its iterative solution generation process, it is possible to check, after each step, which
solutions components can be added without making the solution unfeasible. In other
methods, such as genetic algorithms, it can be harder to guarantee that new solutions
created are feasible.

Besides, the pheromone matrices in ACO methods are a good representation of each
solution component contribution to each objective and highlights good components.

46 Methodology

ACO algorithms also make it easy to use problem related information through heuristic
functions.

Decomposition based methods, mainly represented by MOEA/D, have also been
applied with great results for many real-world multiobjective problems [53]. These
methods are able to explore well different regions of Pareto Fronts, which improves
solution diversity. The optimization of simplified scalar sub-problems also leads to
efficient solutions.

Local search algorithms are efficient methods that can always lead to good solutions
in a region. Their main disadvantage is the inability to explore the complete search space
on its own and escape local optima.

The MOEA/D-ACO combines the strength of both approaches really well. This
combined approach keeps the structural advantage of the ACO framework and restrains
the search to the feasible regions of the search space. Simultaneously, the decomposition
approach favors efficiency and diversity.

The use of local search methods favors exploitation and helps improving a population
of solutions found. Two-phase approaches help finding a good initial population and
exploring more regions of the search space.

Finally, these methods are appropriate to parallel implementations, which can make
better use of hardware resources and improve computational times.

3.3.6 Hyperparameter Tuning

As discussed in Section 2.6, meta-heuristics have many hyper parameters, and tuning
them can have significant impact in the results. The methods proposed are no exception:
the number of hyper parameters is more than 12 for all methods considered, most of
which are numeric. These parameters can have great impact in their performance.

A complete hyperparameter selection for so many parameters is absolutely unfeasible.
Thus, some of the most impactful were selected to be optimized, while the other parameters
were given fixed values based on the literature and empirical experiments. The selected
parameters were:

• Number of Ants
• Pheromone Influence (α)

Methodology 47

• Heuristic Influence (β)
• Deposit Rate Modifier (γ)
• Evaporation Rate (ρ)

They were tuned using a fractional factorial experiment design, with predetermined
levels (between 6 and 2 levels for each). They were all tuned with the base MOACO
algorithm and replicated in the other versions. Ideally, they would have to be tuned
again for each algorithm variation, but it was not possible due to time constraints.

3.3.7 Robustness evaluation

In many optimization problems, there might be some variation between the planned
solution and the executed one, either due to inherent variability in the process or due to
unpredictable external factors. In order to prepare for this, it is desirable to estimate
how much the quality of a solution changes when it is subjected to perturbations in its
variables. The robustness of a solution is a metric that tries to account for this variation.
In many problems, it is very important to account for robustness, and not just the ideal
(nominal) objective values of the solutions .

In the trip planning itinerary problem, there are two main possible causes of variations
between a planned solution and its execution:

1. Price variations between the moment information is gathered and the moment the
tickets are bought and reservations are made

2. Flights being sold out or accommodations booked out, which could require changes
in the solution planned.

While the first cause is more common, its effects are smaller and probably do not
cause too much variation. The second one, on the other hand, is rare, but may have a
much greater impact. Thus, it is desirable to measure the possible impact of this problem
in the solutions obtained. This information might be useful to help a user decide between
solutions after the optimization is finished.

In order to estimate the possible variation of a solution if any of their components
becomes unavailable, the following routine is applied to each solution si:

• For every component cj ∈ si, Cj is defined as the set of possible components that
might replace cj without making solution si unfeasible.

48 Methodology

• The best replacement in the set c′j ∈ Cj is selected based on the Euclidean Distance
between each component in Cj and cj in the objective space. The closest component
is selected.
• Each solution sij represents the variation of si in which component c′j replaces cj.

Set S′ is the set of all sij ∀j ∈ {1, ..., |si|}
• The robustness value rmi for each objective m in solution si is defined as the ratio

between the worst objective value for objective m for all sij ∈ S′ and the objective
value of the original solution.
• The aggregated robustness values for solution si is calculated by the product of all

robustness values for all objectives. That is: ri =
∏M

m=1 r
m
i .

The robustness values for each solution si represents the worst case scenario for each
objective in the situation where one of its component becomes unavailable and is replaced
by the second-best feasible replacement.

3.4 Decision Support

Once the optimization method ends, a set of non-dominated solutions is generated. In
order to help the end user to chose one, a decision support method is used. As discussed
in Section 2.7, Weighted Sum Model and Weighted Product Model are two simple decision
support approaches, adequate for a two-objective problem.

The Weighted Sum method is chosen due to its intuitiveness to the decision maker.
The solutions are presented as a list, ordered by the WS rankings. The initial weights for
both objectives are equal, but the user can change them according to their preference.

In addition to the objective values (cost and travel time), other information about the
solutions are presented, including detailed itinerary and robustness value. In addition
to that, a graph representation of the solutions is also available, in which the axis are
the objectives. This helps the user visualize the general distribution of the available
itineraries.

3.5 Example

This section presents en example problem and illustrates all steps of the solution.

Methodology 49

A traveller wants to visit Rome, Paris and London, departing from Lisbon. She wants
to depart on 2018/01/14 and has 15 days available for the trip, so she would like to
spend 4 or 5 days at each destination before returning. The destinations can be visited
in any order. She doesn’t want to travel with the air company Ryanair, and prefer hotels
or Airbnb over hostels. Other than that, she has no further restrictions for the trip.

Given this information, the first step is to gather information of the flights and
accommodations available for the trip. The available dates for each destination are
determined based on the stay lengths and start trip date, as discussed in Section 3.2.2.

The data gathering step results in an initial data set with 845 accommodation options
and 712 flights. The next step is to process this data to reduce it’s size, as seen in 3.2.3.
First, all options that violate the user’s restrictions are removed. This results in a set of
512 accommodations and 652 flights. Then, all components strictly worse than others are
also removed, leaving a set of 306 accommodations and 378 flights. This set in presented
in Tables 3.1 and 3.2. With this data, the optimization process begins.

Table 3.1: Accommodation Options
DateStart DateEnd Dest Cost Time

a0 2018-01-01 2018-01-05 Rome 428.820062 0

a1 2018-01-05 2018-01-09 Rome 395.211905 0

a2 2018-01-06 2018-01-10 Rome 405.564270 0

a3 2018-01-07 2018-01-11 Rome 402.640626 0

a4 2018-01-08 2018-01-12 Rome 378.847405 0

a5 2018-01-09 2018-01-13 Rome 385.325028 0

a6 2018-01-10 2018-01-14 Rome 420.050979 0

a7 2018-01-11 2018-01-15 Rome 424.633099 0

a8 2018-01-12 2018-01-16 Rome 446.037460 0

a9 2018-01-01 2018-01-06 Rome 440.864877 0

a10 2018-01-05 2018-01-10 Rome 417.609086 0

a11 2018-01-06 2018-01-11 Rome 422.366528 0

a12 2018-01-07 2018-01-12 Rome 416.822306 0

a13 2018-01-08 2018-01-13 Rome 427.791315 0

a14 2018-01-09 2018-01-14 Rome 442.448159 0

a15 2018-01-10 2018-01-15 Rome 441.435357 0

a16 2018-01-11 2018-01-16 Rome 460.219139 0

a17 2018-01-01 2018-01-05 Rome 485.003120 0

a18 2018-01-05 2018-01-09 Rome 416.150267 0

a19 2018-01-06 2018-01-10 Rome 401.646730 0

a20 2018-01-07 2018-01-11 Rome 369.462666 0

a21 2018-01-08 2018-01-12 Rome 342.863744 0

a22 2018-01-09 2018-01-13 Rome 344.800057 0

a23 2018-01-10 2018-01-14 Rome 357.461813 0

a24 2018-01-11 2018-01-15 Rome 355.225883 0

a25 2018-01-12 2018-01-16 Rome 363.365539 0

a26 2018-01-01 2018-01-06 Rome 524.439101 0

a27 2018-01-05 2018-01-10 Rome 441.082711 0

a28 2018-01-06 2018-01-11 Rome 415.951277 0

a29 2018-01-07 2018-01-12 Rome 381.092698 0

Continued on next page

50 Methodology

Table 3.1 – continued from previous page

DateStart DateEnd Dest Cost Time

a30 2018-01-08 2018-01-13 Rome 353.796778 0

a31 2018-01-09 2018-01-14 Rome 382.394257 0

a32 2018-01-10 2018-01-15 Rome 369.530431 0

a33 2018-01-11 2018-01-16 Rome 374.995571 0

a34 2018-01-01 2018-01-05 Rome 443.705248 0

a35 2018-01-05 2018-01-09 Rome 422.383313 0

a36 2018-01-06 2018-01-10 Rome 444.796457 0

a37 2018-01-07 2018-01-11 Rome 455.138534 0

a38 2018-01-08 2018-01-12 Rome 440.046463 0

a39 2018-01-09 2018-01-13 Rome 449.034866 0

a40 2018-01-10 2018-01-14 Rome 457.912403 0

a41 2018-01-11 2018-01-15 Rome 440.315301 0

a42 2018-01-12 2018-01-16 Rome 433.327317 0

a43 2018-01-01 2018-01-06 Rome 457.066931 0

a44 2018-01-05 2018-01-10 Rome 458.158140 0

a45 2018-01-06 2018-01-11 Rome 484.924891 0

a46 2018-01-07 2018-01-12 Rome 495.436113 0

a47 2018-01-08 2018-01-13 Rome 489.880489 0

a48 2018-01-09 2018-01-14 Rome 493.687230 0

a49 2018-01-10 2018-01-15 Rome 480.443735 0

a50 2018-01-11 2018-01-16 Rome 473.624896 0

a51 2018-01-01 2018-01-05 Rome 401.620929 0

a52 2018-01-05 2018-01-09 Rome 456.805231 0

a53 2018-01-06 2018-01-10 Rome 430.232114 0

a54 2018-01-07 2018-01-11 Rome 413.684290 0

a55 2018-01-08 2018-01-12 Rome 385.138411 0

a56 2018-01-09 2018-01-13 Rome 354.969892 0

a57 2018-01-10 2018-01-14 Rome 333.997059 0

a58 2018-01-11 2018-01-15 Rome 342.449513 0

a59 2018-01-12 2018-01-16 Rome 340.126385 0

a60 2018-01-01 2018-01-06 Rome 457.058931 0

a61 2018-01-05 2018-01-10 Rome 485.670116 0

a62 2018-01-06 2018-01-11 Rome 449.366553 0

a63 2018-01-07 2018-01-12 Rome 426.774483 0

a64 2018-01-08 2018-01-13 Rome 396.018786 0

a65 2018-01-09 2018-01-14 Rome 362.861944 0

a66 2018-01-10 2018-01-15 Rome 361.583952 0

a67 2018-01-11 2018-01-16 Rome 353.216578 0

a68 2018-01-01 2018-01-05 Rome 395.449280 0

a69 2018-01-05 2018-01-09 Rome 364.650151 0

a70 2018-01-06 2018-01-10 Rome 389.146961 0

a71 2018-01-07 2018-01-11 Rome 412.645860 0

a72 2018-01-08 2018-01-12 Rome 404.090795 0

a73 2018-01-09 2018-01-13 Rome 444.316763 0

a74 2018-01-10 2018-01-14 Rome 407.268119 0

a75 2018-01-11 2018-01-15 Rome 386.150909 0

a76 2018-01-12 2018-01-16 Rome 406.070958 0

a77 2018-01-01 2018-01-06 Rome 428.685376 0

a78 2018-01-05 2018-01-10 Rome 422.383057 0

a79 2018-01-06 2018-01-11 Rome 419.466833 0

a80 2018-01-07 2018-01-12 Rome 428.802551 0

a81 2018-01-08 2018-01-13 Rome 461.198089 0

a82 2018-01-09 2018-01-14 Rome 465.001025 0

a83 2018-01-10 2018-01-15 Rome 416.470782 0

a84 2018-01-11 2018-01-16 Rome 422.227649 0

a85 2018-01-01 2018-01-05 Rome 452.729322 0

a86 2018-01-05 2018-01-09 Rome 390.260236 0

Continued on next page

Methodology 51

Table 3.1 – continued from previous page

DateStart DateEnd Dest Cost Time

a87 2018-01-06 2018-01-10 Rome 373.845008 0

a88 2018-01-07 2018-01-11 Rome 354.248112 0

a89 2018-01-08 2018-01-12 Rome 350.661388 0

a90 2018-01-09 2018-01-13 Rome 368.500019 0

a91 2018-01-10 2018-01-14 Rome 369.453150 0

a92 2018-01-11 2018-01-15 Rome 392.979646 0

a93 2018-01-12 2018-01-16 Rome 422.414696 0

a94 2018-01-01 2018-01-06 Rome 480.337164 0

a95 2018-01-05 2018-01-10 Rome 401.452850 0

a96 2018-01-06 2018-01-11 Rome 392.513902 0

a97 2018-01-07 2018-01-12 Rome 379.443858 0

a98 2018-01-08 2018-01-13 Rome 381.104154 0

a99 2018-01-09 2018-01-14 Rome 380.645764 0

a100 2018-01-10 2018-01-15 Rome 411.648539 0

a101 2018-01-11 2018-01-16 Rome 447.610441 0

a102 2018-01-01 2018-01-05 Paris 437.469652 0

a103 2018-01-05 2018-01-09 Paris 391.032583 0

a104 2018-01-06 2018-01-10 Paris 397.872154 0

a105 2018-01-07 2018-01-11 Paris 433.150089 0

a106 2018-01-08 2018-01-12 Paris 436.823219 0

a107 2018-01-09 2018-01-13 Paris 432.821849 0

a108 2018-01-10 2018-01-14 Paris 466.650771 0

a109 2018-01-11 2018-01-15 Paris 432.907155 0

a110 2018-01-12 2018-01-16 Paris 423.118272 0

a111 2018-01-01 2018-01-06 Paris 444.311807 0

a112 2018-01-05 2018-01-10 Paris 404.714309 0

a113 2018-01-06 2018-01-11 Paris 446.098041 0

a114 2018-01-07 2018-01-12 Paris 476.898878 0

a115 2018-01-08 2018-01-13 Paris 480.988665 0

a116 2018-01-09 2018-01-14 Paris 480.332497 0

a117 2018-01-10 2018-01-15 Paris 481.133042 0

a118 2018-01-11 2018-01-16 Paris 466.867062 0

a119 2018-01-01 2018-01-05 Paris 454.033102 0

a120 2018-01-05 2018-01-09 Paris 397.449169 0

a121 2018-01-06 2018-01-10 Paris 427.198234 0

a122 2018-01-07 2018-01-11 Paris 441.418651 0

a123 2018-01-08 2018-01-12 Paris 464.258190 0

a124 2018-01-09 2018-01-13 Paris 436.309782 0

a125 2018-01-10 2018-01-14 Paris 402.483383 0

a126 2018-01-11 2018-01-15 Paris 405.233684 0

a127 2018-01-12 2018-01-16 Paris 390.716385 0

a128 2018-01-01 2018-01-06 Paris 475.702846 0

a129 2018-01-05 2018-01-10 Paris 448.867979 0

a130 2018-01-06 2018-01-11 Paris 462.915510 0

a131 2018-01-07 2018-01-12 Paris 492.745899 0

a132 2018-01-08 2018-01-13 Paris 479.104639 0

a133 2018-01-09 2018-01-14 Paris 453.902193 0

a134 2018-01-10 2018-01-15 Paris 440.950960 0

a135 2018-01-11 2018-01-16 Paris 442.043633 0

a136 2018-01-01 2018-01-05 Paris 439.346200 0

a137 2018-01-05 2018-01-09 Paris 423.270375 0

a138 2018-01-06 2018-01-10 Paris 397.137642 0

a139 2018-01-07 2018-01-11 Paris 388.590134 0

a140 2018-01-08 2018-01-12 Paris 392.737032 0

a141 2018-01-09 2018-01-13 Paris 414.833349 0

a142 2018-01-10 2018-01-14 Paris 424.435087 0

a143 2018-01-11 2018-01-15 Paris 433.364003 0

Continued on next page

52 Methodology

Table 3.1 – continued from previous page

DateStart DateEnd Dest Cost Time

a144 2018-01-12 2018-01-16 Paris 420.478311 0

a145 2018-01-01 2018-01-06 Paris 479.845621 0

a146 2018-01-05 2018-01-10 Paris 437.637063 0

a147 2018-01-06 2018-01-11 Paris 424.352787 0

a148 2018-01-07 2018-01-12 Paris 445.648177 0

a149 2018-01-08 2018-01-13 Paris 425.930505 0

a150 2018-01-09 2018-01-14 Paris 438.801774 0

a151 2018-01-10 2018-01-15 Paris 460.579148 0

a152 2018-01-11 2018-01-16 Paris 477.536353 0

a153 2018-01-01 2018-01-05 Paris 445.372333 0

a154 2018-01-05 2018-01-09 Paris 420.176696 0

a155 2018-01-06 2018-01-10 Paris 437.267443 0

a156 2018-01-07 2018-01-11 Paris 409.873171 0

a157 2018-01-08 2018-01-12 Paris 435.510265 0

a158 2018-01-09 2018-01-13 Paris 390.082346 0

a159 2018-01-10 2018-01-14 Paris 406.492564 0

a160 2018-01-11 2018-01-15 Paris 415.352196 0

a161 2018-01-12 2018-01-16 Paris 386.794713 0

a162 2018-01-01 2018-01-06 Paris 466.438370 0

a163 2018-01-05 2018-01-10 Paris 458.333480 0

a164 2018-01-06 2018-01-11 Paris 446.733674 0

a165 2018-01-07 2018-01-12 Paris 460.644927 0

a166 2018-01-08 2018-01-13 Paris 444.197839 0

a167 2018-01-09 2018-01-14 Paris 444.649348 0

a168 2018-01-10 2018-01-15 Paris 424.818427 0

a169 2018-01-11 2018-01-16 Paris 437.566468 0

a170 2018-01-01 2018-01-05 Paris 442.709208 0

a171 2018-01-05 2018-01-09 Paris 429.337007 0

a172 2018-01-06 2018-01-10 Paris 403.387275 0

a173 2018-01-07 2018-01-11 Paris 409.851324 0

a174 2018-01-08 2018-01-12 Paris 387.579568 0

a175 2018-01-09 2018-01-13 Paris 360.577065 0

a176 2018-01-10 2018-01-14 Paris 391.063524 0

a177 2018-01-11 2018-01-15 Paris 403.496890 0

a178 2018-01-12 2018-01-16 Paris 423.792003 0

a179 2018-01-01 2018-01-06 Paris 480.994947 0

a180 2018-01-05 2018-01-10 Paris 441.673014 0

a181 2018-01-06 2018-01-11 Paris 445.842933 0

a182 2018-01-07 2018-01-12 Paris 416.300758 0

a183 2018-01-08 2018-01-13 Paris 403.915533 0

a184 2018-01-09 2018-01-14 Paris 403.399532 0

a185 2018-01-10 2018-01-15 Paris 445.952549 0

a186 2018-01-11 2018-01-16 Paris 430.241437 0

a187 2018-01-01 2018-01-05 Paris 420.209189 0

a188 2018-01-05 2018-01-09 Paris 462.433090 0

a189 2018-01-06 2018-01-10 Paris 484.446958 0

a190 2018-01-07 2018-01-11 Paris 473.963099 0

a191 2018-01-08 2018-01-12 Paris 446.031159 0

a192 2018-01-09 2018-01-13 Paris 394.555218 0

a193 2018-01-10 2018-01-14 Paris 351.698946 0

a194 2018-01-11 2018-01-15 Paris 360.122619 0

a195 2018-01-12 2018-01-16 Paris 352.239209 0

a196 2018-01-01 2018-01-06 Paris 448.557763 0

a197 2018-01-05 2018-01-10 Paris 512.795532 0

a198 2018-01-06 2018-01-11 Paris 514.096390 0

a199 2018-01-07 2018-01-12 Paris 498.699543 0

a200 2018-01-08 2018-01-13 Paris 452.838060 0

Continued on next page

Methodology 53

Table 3.1 – continued from previous page

DateStart DateEnd Dest Cost Time

a201 2018-01-09 2018-01-14 Paris 402.061388 0

a202 2018-01-10 2018-01-15 Paris 389.772051 0

a203 2018-01-11 2018-01-16 Paris 376.975653 0

a204 2018-01-01 2018-01-05 London 390.802191 0

a205 2018-01-05 2018-01-09 London 442.026904 0

a206 2018-01-06 2018-01-10 London 432.467877 0

a207 2018-01-07 2018-01-11 London 472.084183 0

a208 2018-01-08 2018-01-12 London 461.900628 0

a209 2018-01-09 2018-01-13 London 483.538231 0

a210 2018-01-10 2018-01-14 London 492.782578 0

a211 2018-01-11 2018-01-15 London 474.716332 0

a212 2018-01-12 2018-01-16 London 465.657199 0

a213 2018-01-01 2018-01-06 London 446.382055 0

a214 2018-01-05 2018-01-10 London 488.047741 0

a215 2018-01-06 2018-01-11 London 488.812577 0

a216 2018-01-07 2018-01-12 London 513.095200 0

a217 2018-01-08 2018-01-13 London 519.062304 0

a218 2018-01-09 2018-01-14 London 538.803415 0

a219 2018-01-10 2018-01-15 London 531.061032 0

a220 2018-01-11 2018-01-16 London 506.668216 0

a221 2018-01-01 2018-01-05 London 383.297623 0

a222 2018-01-05 2018-01-09 London 382.809059 0

a223 2018-01-06 2018-01-10 London 383.744130 0

a224 2018-01-07 2018-01-11 London 376.784690 0

a225 2018-01-08 2018-01-12 London 411.840834 0

a226 2018-01-09 2018-01-13 London 448.241440 0

a227 2018-01-10 2018-01-14 London 450.895193 0

a228 2018-01-11 2018-01-15 London 436.249859 0

a229 2018-01-12 2018-01-16 London 428.600321 0

a230 2018-01-01 2018-01-06 London 427.508503 0

a231 2018-01-05 2018-01-10 London 427.955010 0

a232 2018-01-06 2018-01-11 London 404.918857 0

a233 2018-01-07 2018-01-12 London 423.846659 0

a234 2018-01-08 2018-01-13 London 463.699627 0

a235 2018-01-09 2018-01-14 London 496.041144 0

a236 2018-01-10 2018-01-15 London 457.424586 0

a237 2018-01-11 2018-01-16 London 475.662290 0

a238 2018-01-01 2018-01-05 London 417.468761 0

a239 2018-01-05 2018-01-09 London 374.091797 0

a240 2018-01-06 2018-01-10 London 408.211025 0

a241 2018-01-07 2018-01-11 London 401.209406 0

a242 2018-01-08 2018-01-12 London 388.835702 0

a243 2018-01-09 2018-01-13 London 398.986288 0

a244 2018-01-10 2018-01-14 London 384.637046 0

a245 2018-01-11 2018-01-15 London 390.224258 0

a246 2018-01-12 2018-01-16 London 394.784905 0

a247 2018-01-01 2018-01-06 London 436.637333 0

a248 2018-01-05 2018-01-10 London 427.379597 0

a249 2018-01-06 2018-01-11 London 426.691053 0

a250 2018-01-07 2018-01-12 London 421.837124 0

a251 2018-01-08 2018-01-13 London 412.426444 0

a252 2018-01-09 2018-01-14 London 437.924847 0

a253 2018-01-10 2018-01-15 London 408.704286 0

a254 2018-01-11 2018-01-16 London 415.412622 0

a255 2018-01-01 2018-01-05 London 437.655092 0

a256 2018-01-05 2018-01-09 London 374.442206 0

a257 2018-01-06 2018-01-10 London 367.621830 0

Continued on next page

54 Methodology

Table 3.1 – continued from previous page

DateStart DateEnd Dest Cost Time

a258 2018-01-07 2018-01-11 London 348.546266 0

a259 2018-01-08 2018-01-12 London 372.403334 0

a260 2018-01-09 2018-01-13 London 397.267096 0

a261 2018-01-10 2018-01-14 London 438.794691 0

a262 2018-01-11 2018-01-15 London 441.307087 0

a263 2018-01-12 2018-01-16 London 417.703751 0

a264 2018-01-01 2018-01-06 London 454.690239 0

a265 2018-01-05 2018-01-10 London 384.656977 0

a266 2018-01-06 2018-01-11 London 378.722508 0

a267 2018-01-07 2018-01-12 London 385.172443 0

a268 2018-01-08 2018-01-13 London 428.728804 0

a269 2018-01-09 2018-01-14 London 449.009462 0

a270 2018-01-10 2018-01-15 London 452.407764 0

a271 2018-01-11 2018-01-16 London 454.329928 0

a272 2018-01-01 2018-01-05 London 404.723571 0

a273 2018-01-05 2018-01-09 London 404.440102 0

a274 2018-01-06 2018-01-10 London 406.224976 0

a275 2018-01-07 2018-01-11 London 392.509662 0

a276 2018-01-08 2018-01-12 London 358.226274 0

a277 2018-01-09 2018-01-13 London 351.719819 0

a278 2018-01-10 2018-01-14 London 338.110935 0

a279 2018-01-11 2018-01-15 London 388.803156 0

a280 2018-01-12 2018-01-16 London 428.613544 0

a281 2018-01-01 2018-01-06 London 437.768135 0

a282 2018-01-05 2018-01-10 London 439.269540 0

a283 2018-01-06 2018-01-11 London 412.922019 0

a284 2018-01-07 2018-01-12 London 401.702230 0

a285 2018-01-08 2018-01-13 London 376.227044 0

a286 2018-01-09 2018-01-14 London 372.940374 0

a287 2018-01-10 2018-01-15 London 395.500198 0

a288 2018-01-11 2018-01-16 London 437.806112 0

a289 2018-01-01 2018-01-05 London 450.380604 0

a290 2018-01-05 2018-01-09 London 408.674267 0

a291 2018-01-06 2018-01-10 London 438.017023 0

a292 2018-01-07 2018-01-11 London 456.014234 0

a293 2018-01-08 2018-01-12 London 460.717359 0

a294 2018-01-09 2018-01-13 London 461.184001 0

a295 2018-01-10 2018-01-14 London 475.070936 0

a296 2018-01-11 2018-01-15 London 451.381007 0

a297 2018-01-12 2018-01-16 London 435.849898 0

a298 2018-01-01 2018-01-06 London 457.562468 0

a299 2018-01-05 2018-01-10 London 445.198886 0

a300 2018-01-06 2018-01-11 London 492.660059 0

a301 2018-01-07 2018-01-12 London 487.348415 0

a302 2018-01-08 2018-01-13 London 516.399524 0

a303 2018-01-09 2018-01-14 London 511.595555 0

a304 2018-01-10 2018-01-15 London 506.024043 0

a305 2018-01-11 2018-01-16 London 467.184078 0

Table 3.2: Transports Options
DateStart DateEnd Dest Start Dest End Cost Time (min)

t0 2014-01-01 04:22:00 2014-01-01 09:56:00 Lisbon Rome 359.75 334

t1 2014-01-01 08:00:00 2014-01-01 13:08:00 Lisbon Rome 334.84 308

Continued on next page

Methodology 55

Table 3.2 – continued from previous page

DateStart DateEnd Dest Start Dest End Cost Time (min)

t2 2014-01-01 11:12:00 2014-01-01 16:35:00 Lisbon Rome 546.61 323

t3 2014-01-01 13:38:00 2014-01-01 19:31:00 Lisbon Rome 321.61 353

t4 2014-01-01 17:07:00 2014-01-01 22:49:00 Lisbon Rome 560.78 342

t5 2014-01-01 20:14:00 2014-01-02 01:57:00 Lisbon Rome 364.30 343

t6 2014-01-13 05:26:00 2014-01-13 09:27:00 Rome Lisbon 462.46 241

t7 2014-01-13 07:58:00 2014-01-13 11:22:00 Rome Lisbon 483.28 204

t8 2014-01-13 10:03:00 2014-01-13 13:14:00 Rome Lisbon 457.26 191

t9 2014-01-13 13:38:00 2014-01-13 17:13:00 Rome Lisbon 586.63 215

t10 2014-01-13 16:45:00 2014-01-13 21:11:00 Rome Lisbon 454.56 266

t11 2014-01-13 19:48:00 2014-01-13 23:04:00 Rome Lisbon 578.52 196

t12 2014-01-14 05:26:00 2014-01-14 09:47:00 Rome Lisbon 478.48 261

t13 2014-01-14 07:58:00 2014-01-14 11:46:00 Rome Lisbon 345.22 228

t14 2014-01-14 10:03:00 2014-01-14 13:44:00 Rome Lisbon 525.95 221

t15 2014-01-14 13:38:00 2014-01-14 17:57:00 Rome Lisbon 383.09 259

t16 2014-01-14 16:45:00 2014-01-14 20:26:00 Rome Lisbon 584.94 221

t17 2014-01-14 19:48:00 2014-01-14 23:53:00 Rome Lisbon 532.67 245

t18 2014-01-15 05:26:00 2014-01-15 09:01:00 Rome Lisbon 374.20 215

t19 2014-01-15 07:58:00 2014-01-15 12:19:00 Rome Lisbon 340.02 261

t20 2014-01-15 10:03:00 2014-01-15 14:05:00 Rome Lisbon 321.06 242

t21 2014-01-15 13:38:00 2014-01-15 17:40:00 Rome Lisbon 599.05 242

t22 2014-01-15 16:45:00 2014-01-15 20:14:00 Rome Lisbon 360.05 209

t23 2014-01-15 19:48:00 2014-01-15 23:56:00 Rome Lisbon 563.49 248

t24 2014-01-16 05:26:00 2014-01-16 09:23:00 Rome Lisbon 609.48 237

t25 2014-01-16 07:58:00 2014-01-16 11:19:00 Rome Lisbon 543.33 201

t26 2014-01-16 10:03:00 2014-01-16 13:17:00 Rome Lisbon 472.64 194

t27 2014-01-16 13:38:00 2014-01-16 17:49:00 Rome Lisbon 465.92 251

t28 2014-01-16 16:45:00 2014-01-16 21:11:00 Rome Lisbon 596.11 266

t29 2014-01-16 19:48:00 2014-01-16 23:29:00 Rome Lisbon 471.88 221

t30 2014-01-05 04:28:00 2014-01-05 10:51:00 Rome Paris 504.20 383

t31 2014-01-05 08:12:00 2014-01-05 14:28:00 Rome Paris 588.24 376

t32 2014-01-05 10:06:00 2014-01-05 15:50:00 Rome Paris 462.06 344

t33 2014-01-05 14:01:00 2014-01-05 19:39:00 Rome Paris 617.90 338

t34 2014-01-05 16:34:00 2014-01-05 22:48:00 Rome Paris 499.40 374

t35 2014-01-05 19:57:00 2014-01-06 02:03:00 Rome Paris 576.59 366

t36 2014-01-06 04:28:00 2014-01-06 10:08:00 Rome Paris 604.34 340

t37 2014-01-06 08:12:00 2014-01-06 14:39:00 Rome Paris 574.94 387

t38 2014-01-06 10:06:00 2014-01-06 15:38:00 Rome Paris 368.23 332

t39 2014-01-06 14:01:00 2014-01-06 19:36:00 Rome Paris 516.14 335

t40 2014-01-06 16:34:00 2014-01-06 22:40:00 Rome Paris 443.53 366

t41 2014-01-06 19:57:00 2014-01-07 01:37:00 Rome Paris 337.76 340

t42 2014-01-07 04:28:00 2014-01-07 10:52:00 Rome Paris 451.60 384

t43 2014-01-07 08:12:00 2014-01-07 13:35:00 Rome Paris 399.51 323

t44 2014-01-07 10:06:00 2014-01-07 15:40:00 Rome Paris 585.50 334

t45 2014-01-07 14:01:00 2014-01-07 20:03:00 Rome Paris 328.50 362

t46 2014-01-07 16:34:00 2014-01-07 22:54:00 Rome Paris 620.14 380

t47 2014-01-07 19:57:00 2014-01-08 01:07:00 Rome Paris 429.97 310

t48 2014-01-08 04:28:00 2014-01-08 09:49:00 Rome Paris 430.39 321

t49 2014-01-08 08:12:00 2014-01-08 13:32:00 Rome Paris 323.15 320

t50 2014-01-08 10:06:00 2014-01-08 15:50:00 Rome Paris 376.36 344

t51 2014-01-08 14:01:00 2014-01-08 20:21:00 Rome Paris 444.42 380

t52 2014-01-08 16:34:00 2014-01-08 22:06:00 Rome Paris 610.78 332

t53 2014-01-08 19:57:00 2014-01-09 01:31:00 Rome Paris 349.39 334

t54 2014-01-09 04:28:00 2014-01-09 10:50:00 Rome Paris 615.83 382

t55 2014-01-09 08:12:00 2014-01-09 13:22:00 Rome Paris 591.94 310

t56 2014-01-09 10:06:00 2014-01-09 16:02:00 Rome Paris 461.09 356

t57 2014-01-09 14:01:00 2014-01-09 19:12:00 Rome Paris 420.93 311

t58 2014-01-09 16:34:00 2014-01-09 22:07:00 Rome Paris 391.33 333

Continued on next page

56 Methodology

Table 3.2 – continued from previous page

DateStart DateEnd Dest Start Dest End Cost Time (min)

t59 2014-01-09 19:57:00 2014-01-10 01:26:00 Rome Paris 511.60 329

t60 2014-01-10 04:28:00 2014-01-10 10:29:00 Rome Paris 328.43 361

t61 2014-01-10 08:12:00 2014-01-10 14:23:00 Rome Paris 322.92 371

t62 2014-01-10 10:06:00 2014-01-10 15:51:00 Rome Paris 453.10 345

t63 2014-01-10 14:01:00 2014-01-10 19:27:00 Rome Paris 339.45 326

t64 2014-01-10 16:34:00 2014-01-10 22:53:00 Rome Paris 397.38 379

t65 2014-01-10 19:57:00 2014-01-11 01:28:00 Rome Paris 387.68 331

t66 2014-01-11 04:28:00 2014-01-11 10:34:00 Rome Paris 397.77 366

t67 2014-01-11 08:12:00 2014-01-11 14:01:00 Rome Paris 359.30 349

t68 2014-01-11 10:06:00 2014-01-11 15:24:00 Rome Paris 321.80 318

t69 2014-01-11 14:01:00 2014-01-11 19:50:00 Rome Paris 354.39 349

t70 2014-01-11 16:34:00 2014-01-11 22:20:00 Rome Paris 512.86 346

t71 2014-01-11 19:57:00 2014-01-12 01:28:00 Rome Paris 624.95 331

t72 2014-01-12 04:28:00 2014-01-12 09:30:00 Rome Paris 630.02 302

t73 2014-01-12 08:12:00 2014-01-12 13:25:00 Rome Paris 446.88 313

t74 2014-01-12 10:06:00 2014-01-12 15:17:00 Rome Paris 369.35 311

t75 2014-01-12 14:01:00 2014-01-12 20:04:00 Rome Paris 519.25 363

t76 2014-01-12 16:34:00 2014-01-12 22:37:00 Rome Paris 472.48 363

t77 2014-01-12 19:57:00 2014-01-13 01:52:00 Rome Paris 629.72 355

t78 2014-01-05 04:02:00 2014-01-05 10:53:00 Rome London 529.69 411

t79 2014-01-05 07:30:00 2014-01-05 14:32:00 Rome London 459.00 422

t80 2014-01-05 10:56:00 2014-01-05 17:56:00 Rome London 537.31 420

t81 2014-01-05 13:25:00 2014-01-05 20:50:00 Rome London 437.20 445

t82 2014-01-05 16:18:00 2014-01-05 22:18:00 Rome London 349.52 360

t83 2014-01-05 19:10:00 2014-01-06 02:08:00 Rome London 620.54 418

t84 2014-01-06 04:02:00 2014-01-06 10:56:00 Rome London 340.83 414

t85 2014-01-06 07:30:00 2014-01-06 14:22:00 Rome London 324.09 412

t86 2014-01-06 10:56:00 2014-01-06 18:22:00 Rome London 626.62 446

t87 2014-01-06 13:25:00 2014-01-06 19:26:00 Rome London 364.78 361

t88 2014-01-06 16:18:00 2014-01-06 23:20:00 Rome London 399.51 422

t89 2014-01-06 19:10:00 2014-01-07 02:23:00 Rome London 385.91 433

t90 2014-01-07 04:02:00 2014-01-07 10:47:00 Rome London 500.71 405

t91 2014-01-07 07:30:00 2014-01-07 14:00:00 Rome London 625.42 390

t92 2014-01-07 10:56:00 2014-01-07 18:07:00 Rome London 404.02 431

t93 2014-01-07 13:25:00 2014-01-07 19:33:00 Rome London 623.63 368

t94 2014-01-07 16:18:00 2014-01-07 22:57:00 Rome London 326.04 399

t95 2014-01-07 19:10:00 2014-01-08 01:56:00 Rome London 597.79 406

t96 2014-01-08 04:02:00 2014-01-08 11:04:00 Rome London 541.26 422

t97 2014-01-08 07:30:00 2014-01-08 13:38:00 Rome London 405.52 368

t98 2014-01-08 10:56:00 2014-01-08 17:16:00 Rome London 599.94 380

t99 2014-01-08 13:25:00 2014-01-08 20:01:00 Rome London 326.36 396

t100 2014-01-08 16:18:00 2014-01-08 23:14:00 Rome London 515.12 416

t101 2014-01-08 19:10:00 2014-01-09 02:29:00 Rome London 421.83 439

t102 2014-01-09 04:02:00 2014-01-09 10:57:00 Rome London 622.70 415

t103 2014-01-09 07:30:00 2014-01-09 13:42:00 Rome London 371.12 372

t104 2014-01-09 10:56:00 2014-01-09 18:24:00 Rome London 602.02 448

t105 2014-01-09 13:25:00 2014-01-09 20:43:00 Rome London 421.95 438

t106 2014-01-09 16:18:00 2014-01-09 23:03:00 Rome London 598.16 405

t107 2014-01-09 19:10:00 2014-01-10 02:33:00 Rome London 479.46 443

t108 2014-01-10 04:02:00 2014-01-10 10:50:00 Rome London 478.88 408

t109 2014-01-10 07:30:00 2014-01-10 14:53:00 Rome London 439.88 443

t110 2014-01-10 10:56:00 2014-01-10 18:10:00 Rome London 485.01 434

t111 2014-01-10 13:25:00 2014-01-10 20:52:00 Rome London 615.64 447

t112 2014-01-10 16:18:00 2014-01-10 23:40:00 Rome London 599.31 442

t113 2014-01-10 19:10:00 2014-01-11 01:13:00 Rome London 531.33 363

t114 2014-01-11 04:02:00 2014-01-11 10:17:00 Rome London 519.33 375

t115 2014-01-11 07:30:00 2014-01-11 14:05:00 Rome London 490.77 395

Continued on next page

Methodology 57

Table 3.2 – continued from previous page

DateStart DateEnd Dest Start Dest End Cost Time (min)

t116 2014-01-11 10:56:00 2014-01-11 18:21:00 Rome London 403.92 445

t117 2014-01-11 13:25:00 2014-01-11 19:52:00 Rome London 364.72 387

t118 2014-01-11 16:18:00 2014-01-11 22:32:00 Rome London 587.79 374

t119 2014-01-11 19:10:00 2014-01-12 02:29:00 Rome London 518.08 439

t120 2014-01-12 04:02:00 2014-01-12 10:42:00 Rome London 412.41 400

t121 2014-01-12 07:30:00 2014-01-12 14:51:00 Rome London 463.00 441

t122 2014-01-12 10:56:00 2014-01-12 17:10:00 Rome London 325.73 374

t123 2014-01-12 13:25:00 2014-01-12 20:24:00 Rome London 493.83 419

t124 2014-01-12 16:18:00 2014-01-12 22:57:00 Rome London 431.79 399

t125 2014-01-12 19:10:00 2014-01-13 01:16:00 Rome London 476.39 366

t126 2014-01-01 04:39:00 2014-01-01 10:32:00 Lisbon Paris 537.43 353

t127 2014-01-01 07:16:00 2014-01-01 13:14:00 Lisbon Paris 395.95 358

t128 2014-01-01 11:04:00 2014-01-01 16:04:00 Lisbon Paris 330.49 300

t129 2014-01-01 13:47:00 2014-01-01 20:14:00 Lisbon Paris 336.89 387

t130 2014-01-01 16:28:00 2014-01-01 22:27:00 Lisbon Paris 337.25 359

t131 2014-01-01 19:00:00 2014-01-02 00:26:00 Lisbon Paris 603.99 326

t132 2014-01-13 05:02:00 2014-01-13 11:48:00 Paris Lisbon 381.13 406

t133 2014-01-13 07:30:00 2014-01-13 14:39:00 Paris Lisbon 609.65 429

t134 2014-01-13 10:13:00 2014-01-13 17:39:00 Paris Lisbon 415.44 446

t135 2014-01-13 13:05:00 2014-01-13 19:15:00 Paris Lisbon 445.04 370

t136 2014-01-13 16:21:00 2014-01-13 22:30:00 Paris Lisbon 517.45 369

t137 2014-01-13 19:38:00 2014-01-14 02:31:00 Paris Lisbon 598.61 413

t138 2014-01-14 05:02:00 2014-01-14 12:09:00 Paris Lisbon 454.30 427

t139 2014-01-14 07:30:00 2014-01-14 14:46:00 Paris Lisbon 610.45 436

t140 2014-01-14 10:13:00 2014-01-14 17:37:00 Paris Lisbon 504.54 444

t141 2014-01-14 13:05:00 2014-01-14 20:33:00 Paris Lisbon 454.04 448

t142 2014-01-14 16:21:00 2014-01-14 22:56:00 Paris Lisbon 504.76 395

t143 2014-01-14 19:38:00 2014-01-15 02:12:00 Paris Lisbon 429.69 394

t144 2014-01-15 05:02:00 2014-01-15 11:15:00 Paris Lisbon 525.00 373

t145 2014-01-15 07:30:00 2014-01-15 14:31:00 Paris Lisbon 523.52 421

t146 2014-01-15 10:13:00 2014-01-15 17:12:00 Paris Lisbon 576.89 419

t147 2014-01-15 13:05:00 2014-01-15 20:22:00 Paris Lisbon 444.90 437

t148 2014-01-15 16:21:00 2014-01-15 22:29:00 Paris Lisbon 329.84 368

t149 2014-01-15 19:38:00 2014-01-16 02:22:00 Paris Lisbon 628.22 404

t150 2014-01-16 05:02:00 2014-01-16 11:54:00 Paris Lisbon 459.20 412

t151 2014-01-16 07:30:00 2014-01-16 13:51:00 Paris Lisbon 613.41 381

t152 2014-01-16 10:13:00 2014-01-16 16:28:00 Paris Lisbon 529.74 375

t153 2014-01-16 13:05:00 2014-01-16 20:22:00 Paris Lisbon 402.03 437

t154 2014-01-16 16:21:00 2014-01-16 22:26:00 Paris Lisbon 495.72 365

t155 2014-01-16 19:38:00 2014-01-17 02:20:00 Paris Lisbon 619.49 402

t156 2014-01-05 04:02:00 2014-01-05 11:24:00 Paris Rome 354.50 442

t157 2014-01-05 07:12:00 2014-01-05 14:31:00 Paris Rome 462.00 439

t158 2014-01-05 10:46:00 2014-01-05 18:06:00 Paris Rome 626.75 440

t159 2014-01-05 13:20:00 2014-01-05 19:49:00 Paris Rome 451.50 389

t160 2014-01-05 16:33:00 2014-01-05 23:37:00 Paris Rome 588.05 424

t161 2014-01-05 19:04:00 2014-01-06 01:42:00 Paris Rome 354.97 398

t162 2014-01-06 04:02:00 2014-01-06 10:29:00 Paris Rome 403.47 387

t163 2014-01-06 07:12:00 2014-01-06 13:18:00 Paris Rome 445.22 366

t164 2014-01-06 10:46:00 2014-01-06 17:23:00 Paris Rome 443.97 397

t165 2014-01-06 13:20:00 2014-01-06 19:54:00 Paris Rome 529.53 394

t166 2014-01-06 16:33:00 2014-01-06 22:47:00 Paris Rome 426.61 374

t167 2014-01-06 19:04:00 2014-01-07 01:35:00 Paris Rome 542.88 391

t168 2014-01-07 04:02:00 2014-01-07 10:10:00 Paris Rome 519.38 368

t169 2014-01-07 07:12:00 2014-01-07 14:30:00 Paris Rome 443.76 438

t170 2014-01-07 10:46:00 2014-01-07 17:46:00 Paris Rome 454.03 420

t171 2014-01-07 13:20:00 2014-01-07 19:37:00 Paris Rome 511.62 377

t172 2014-01-07 16:33:00 2014-01-07 23:55:00 Paris Rome 340.07 442

Continued on next page

58 Methodology

Table 3.2 – continued from previous page

DateStart DateEnd Dest Start Dest End Cost Time (min)

t173 2014-01-07 19:04:00 2014-01-08 01:56:00 Paris Rome 577.11 412

t174 2014-01-08 04:02:00 2014-01-08 10:43:00 Paris Rome 523.87 401

t175 2014-01-08 07:12:00 2014-01-08 14:09:00 Paris Rome 546.84 417

t176 2014-01-08 10:46:00 2014-01-08 17:08:00 Paris Rome 487.17 382

t177 2014-01-08 13:20:00 2014-01-08 20:09:00 Paris Rome 352.81 409

t178 2014-01-08 16:33:00 2014-01-08 22:44:00 Paris Rome 445.61 371

t179 2014-01-08 19:04:00 2014-01-09 01:22:00 Paris Rome 445.72 378

t180 2014-01-09 04:02:00 2014-01-09 10:48:00 Paris Rome 419.15 406

t181 2014-01-09 07:12:00 2014-01-09 13:20:00 Paris Rome 327.44 368

t182 2014-01-09 10:46:00 2014-01-09 18:02:00 Paris Rome 550.28 436

t183 2014-01-09 13:20:00 2014-01-09 19:55:00 Paris Rome 352.59 395

t184 2014-01-09 16:33:00 2014-01-09 22:53:00 Paris Rome 509.03 380

t185 2014-01-09 19:04:00 2014-01-10 01:56:00 Paris Rome 539.56 412

t186 2014-01-10 04:02:00 2014-01-10 11:09:00 Paris Rome 518.00 427

t187 2014-01-10 07:12:00 2014-01-10 14:06:00 Paris Rome 620.19 414

t188 2014-01-10 10:46:00 2014-01-10 17:38:00 Paris Rome 350.55 412

t189 2014-01-10 13:20:00 2014-01-10 19:35:00 Paris Rome 591.21 375

t190 2014-01-10 16:33:00 2014-01-10 23:34:00 Paris Rome 327.20 421

t191 2014-01-10 19:04:00 2014-01-11 02:31:00 Paris Rome 486.53 447

t192 2014-01-11 04:02:00 2014-01-11 10:56:00 Paris Rome 445.36 414

t193 2014-01-11 07:12:00 2014-01-11 13:41:00 Paris Rome 483.15 389

t194 2014-01-11 10:46:00 2014-01-11 17:58:00 Paris Rome 433.03 432

t195 2014-01-11 13:20:00 2014-01-11 20:35:00 Paris Rome 378.04 435

t196 2014-01-11 16:33:00 2014-01-11 23:10:00 Paris Rome 324.03 397

t197 2014-01-11 19:04:00 2014-01-12 01:41:00 Paris Rome 481.25 397

t198 2014-01-12 04:02:00 2014-01-12 11:26:00 Paris Rome 583.53 444

t199 2014-01-12 07:12:00 2014-01-12 14:16:00 Paris Rome 435.59 424

t200 2014-01-12 10:46:00 2014-01-12 16:48:00 Paris Rome 388.22 362

t201 2014-01-12 13:20:00 2014-01-12 19:58:00 Paris Rome 343.38 398

t202 2014-01-12 16:33:00 2014-01-12 22:41:00 Paris Rome 344.88 368

t203 2014-01-12 19:04:00 2014-01-13 02:32:00 Paris Rome 387.76 448

t204 2014-01-05 05:20:00 2014-01-05 09:30:00 Paris London 499.23 250

t205 2014-01-05 08:09:00 2014-01-05 12:28:00 Paris London 520.80 259

t206 2014-01-05 10:32:00 2014-01-05 14:48:00 Paris London 432.83 256

t207 2014-01-05 13:55:00 2014-01-05 18:31:00 Paris London 528.37 276

t208 2014-01-05 16:25:00 2014-01-05 21:32:00 Paris London 498.17 307

t209 2014-01-05 20:18:00 2014-01-06 01:05:00 Paris London 562.07 287

t210 2014-01-06 05:20:00 2014-01-06 10:03:00 Paris London 601.59 283

t211 2014-01-06 08:09:00 2014-01-06 12:09:00 Paris London 445.38 240

t212 2014-01-06 10:32:00 2014-01-06 15:10:00 Paris London 600.09 278

t213 2014-01-06 13:55:00 2014-01-06 18:00:00 Paris London 338.51 245

t214 2014-01-06 16:25:00 2014-01-06 20:43:00 Paris London 533.97 258

t215 2014-01-06 20:18:00 2014-01-07 01:41:00 Paris London 390.81 323

t216 2014-01-07 05:20:00 2014-01-07 09:39:00 Paris London 487.78 259

t217 2014-01-07 08:09:00 2014-01-07 13:26:00 Paris London 561.55 317

t218 2014-01-07 10:32:00 2014-01-07 15:44:00 Paris London 553.22 312

t219 2014-01-07 13:55:00 2014-01-07 18:09:00 Paris London 545.30 254

t220 2014-01-07 16:25:00 2014-01-07 21:19:00 Paris London 470.14 294

t221 2014-01-07 20:18:00 2014-01-08 00:28:00 Paris London 379.13 250

t222 2014-01-08 05:20:00 2014-01-08 10:25:00 Paris London 382.77 305

t223 2014-01-08 08:09:00 2014-01-08 13:06:00 Paris London 486.71 297

t224 2014-01-08 10:32:00 2014-01-08 15:45:00 Paris London 455.94 313

t225 2014-01-08 13:55:00 2014-01-08 18:38:00 Paris London 625.18 283

t226 2014-01-08 16:25:00 2014-01-08 21:47:00 Paris London 412.78 322

t227 2014-01-08 20:18:00 2014-01-09 00:22:00 Paris London 342.89 244

t228 2014-01-09 05:20:00 2014-01-09 09:46:00 Paris London 547.01 266

t229 2014-01-09 08:09:00 2014-01-09 13:13:00 Paris London 625.32 304

Continued on next page

Methodology 59

Table 3.2 – continued from previous page

DateStart DateEnd Dest Start Dest End Cost Time (min)

t230 2014-01-09 10:32:00 2014-01-09 15:09:00 Paris London 564.41 277

t231 2014-01-09 13:55:00 2014-01-09 18:10:00 Paris London 395.84 255

t232 2014-01-09 16:25:00 2014-01-09 20:34:00 Paris London 329.52 249

t233 2014-01-09 20:18:00 2014-01-10 01:31:00 Paris London 446.21 313

t234 2014-01-10 05:20:00 2014-01-10 10:02:00 Paris London 594.55 282

t235 2014-01-10 08:09:00 2014-01-10 13:28:00 Paris London 454.11 319

t236 2014-01-10 10:32:00 2014-01-10 15:37:00 Paris London 407.51 305

t237 2014-01-10 13:55:00 2014-01-10 18:31:00 Paris London 612.68 276

t238 2014-01-10 16:25:00 2014-01-10 20:58:00 Paris London 561.31 273

t239 2014-01-10 20:18:00 2014-01-11 01:04:00 Paris London 510.50 286

t240 2014-01-11 05:20:00 2014-01-11 10:40:00 Paris London 318.85 320

t241 2014-01-11 08:09:00 2014-01-11 13:15:00 Paris London 611.48 306

t242 2014-01-11 10:32:00 2014-01-11 14:32:00 Paris London 530.30 240

t243 2014-01-11 13:55:00 2014-01-11 18:57:00 Paris London 388.73 302

t244 2014-01-11 16:25:00 2014-01-11 21:47:00 Paris London 325.80 322

t245 2014-01-11 20:18:00 2014-01-12 01:21:00 Paris London 320.36 303

t246 2014-01-12 05:20:00 2014-01-12 09:35:00 Paris London 610.19 255

t247 2014-01-12 08:09:00 2014-01-12 12:52:00 Paris London 536.39 283

t248 2014-01-12 10:32:00 2014-01-12 14:44:00 Paris London 540.17 252

t249 2014-01-12 13:55:00 2014-01-12 18:27:00 Paris London 505.80 272

t250 2014-01-12 16:25:00 2014-01-12 21:49:00 Paris London 487.26 324

t251 2014-01-12 20:18:00 2014-01-13 01:41:00 Paris London 461.54 323

t252 2014-01-01 04:57:00 2014-01-01 09:15:00 Lisbon London 407.11 258

t253 2014-01-01 08:08:00 2014-01-01 13:19:00 Lisbon London 425.01 311

t254 2014-01-01 10:32:00 2014-01-01 14:55:00 Lisbon London 507.11 263

t255 2014-01-01 14:03:00 2014-01-01 18:29:00 Lisbon London 621.47 266

t256 2014-01-01 16:52:00 2014-01-01 22:20:00 Lisbon London 364.57 328

t257 2014-01-01 20:12:00 2014-01-02 00:16:00 Lisbon London 398.95 244

t258 2014-01-13 05:22:00 2014-01-13 10:27:00 London Lisbon 377.79 305

t259 2014-01-13 07:10:00 2014-01-13 13:38:00 London Lisbon 482.11 388

t260 2014-01-13 10:30:00 2014-01-13 15:38:00 London Lisbon 436.46 308

t261 2014-01-13 13:15:00 2014-01-13 19:32:00 London Lisbon 394.28 377

t262 2014-01-13 16:10:00 2014-01-13 22:00:00 London Lisbon 533.68 350

t263 2014-01-13 20:20:00 2014-01-14 01:53:00 London Lisbon 528.85 333

t264 2014-01-14 05:22:00 2014-01-14 10:52:00 London Lisbon 621.64 330

t265 2014-01-14 07:10:00 2014-01-14 13:18:00 London Lisbon 594.81 368

t266 2014-01-14 10:30:00 2014-01-14 15:58:00 London Lisbon 632.25 328

t267 2014-01-14 13:15:00 2014-01-14 19:14:00 London Lisbon 432.34 359

t268 2014-01-14 16:10:00 2014-01-14 21:56:00 London Lisbon 332.26 346

t269 2014-01-14 20:20:00 2014-01-15 02:03:00 London Lisbon 420.49 343

t270 2014-01-15 05:22:00 2014-01-15 11:43:00 London Lisbon 474.56 381

t271 2014-01-15 07:10:00 2014-01-15 12:59:00 London Lisbon 372.26 349

t272 2014-01-15 10:30:00 2014-01-15 16:44:00 London Lisbon 344.81 374

t273 2014-01-15 13:15:00 2014-01-15 19:20:00 London Lisbon 460.64 365

t274 2014-01-15 16:10:00 2014-01-15 21:13:00 London Lisbon 611.85 303

t275 2014-01-15 20:20:00 2014-01-16 02:29:00 London Lisbon 558.44 369

t276 2014-01-16 05:22:00 2014-01-16 10:41:00 London Lisbon 416.14 319

t277 2014-01-16 07:10:00 2014-01-16 13:31:00 London Lisbon 597.97 381

t278 2014-01-16 10:30:00 2014-01-16 15:33:00 London Lisbon 537.69 303

t279 2014-01-16 13:15:00 2014-01-16 18:44:00 London Lisbon 463.98 329

t280 2014-01-16 16:10:00 2014-01-16 21:18:00 London Lisbon 401.38 308

t281 2014-01-16 20:20:00 2014-01-17 02:02:00 London Lisbon 499.33 342

t282 2014-01-05 04:53:00 2014-01-05 08:30:00 London Rome 576.36 217

t283 2014-01-05 08:03:00 2014-01-05 11:05:00 London Rome 411.95 182

t284 2014-01-05 10:32:00 2014-01-05 13:37:00 London Rome 365.56 185

t285 2014-01-05 13:56:00 2014-01-05 18:12:00 London Rome 422.06 256

t286 2014-01-05 16:39:00 2014-01-05 20:41:00 London Rome 574.42 242

Continued on next page

60 Methodology

Table 3.2 – continued from previous page

DateStart DateEnd Dest Start Dest End Cost Time (min)

t287 2014-01-05 19:37:00 2014-01-05 22:57:00 London Rome 362.23 200

t288 2014-01-06 04:53:00 2014-01-06 08:03:00 London Rome 389.64 190

t289 2014-01-06 08:03:00 2014-01-06 11:06:00 London Rome 339.70 183

t290 2014-01-06 10:32:00 2014-01-06 14:15:00 London Rome 540.34 223

t291 2014-01-06 13:56:00 2014-01-06 17:48:00 London Rome 442.53 232

t292 2014-01-06 16:39:00 2014-01-06 20:59:00 London Rome 415.94 260

t293 2014-01-06 19:37:00 2014-01-06 23:59:00 London Rome 544.41 262

t294 2014-01-07 04:53:00 2014-01-07 08:25:00 London Rome 423.86 212

t295 2014-01-07 08:03:00 2014-01-07 12:26:00 London Rome 547.29 263

t296 2014-01-07 10:32:00 2014-01-07 14:21:00 London Rome 574.84 229

t297 2014-01-07 13:56:00 2014-01-07 17:47:00 London Rome 386.58 231

t298 2014-01-07 16:39:00 2014-01-07 19:55:00 London Rome 624.81 196

t299 2014-01-07 19:37:00 2014-01-07 22:47:00 London Rome 369.16 190

t300 2014-01-08 04:53:00 2014-01-08 08:14:00 London Rome 409.64 201

t301 2014-01-08 08:03:00 2014-01-08 11:14:00 London Rome 374.65 191

t302 2014-01-08 10:32:00 2014-01-08 13:52:00 London Rome 426.86 200

t303 2014-01-08 13:56:00 2014-01-08 17:44:00 London Rome 469.25 228

t304 2014-01-08 16:39:00 2014-01-08 20:57:00 London Rome 482.52 258

t305 2014-01-08 19:37:00 2014-01-08 23:48:00 London Rome 586.94 251

t306 2014-01-09 04:53:00 2014-01-09 07:55:00 London Rome 598.23 182

t307 2014-01-09 08:03:00 2014-01-09 12:05:00 London Rome 387.35 242

t308 2014-01-09 10:32:00 2014-01-09 13:36:00 London Rome 514.25 184

t309 2014-01-09 13:56:00 2014-01-09 18:25:00 London Rome 353.13 269

t310 2014-01-09 16:39:00 2014-01-09 20:49:00 London Rome 462.61 250

t311 2014-01-09 19:37:00 2014-01-09 22:57:00 London Rome 419.56 200

t312 2014-01-10 04:53:00 2014-01-10 08:37:00 London Rome 417.72 224

t313 2014-01-10 08:03:00 2014-01-10 12:09:00 London Rome 470.05 246

t314 2014-01-10 10:32:00 2014-01-10 14:47:00 London Rome 547.94 255

t315 2014-01-10 13:56:00 2014-01-10 17:16:00 London Rome 339.80 200

t316 2014-01-10 16:39:00 2014-01-10 19:51:00 London Rome 594.99 192

t317 2014-01-10 19:37:00 2014-01-11 00:00:00 London Rome 549.51 263

t318 2014-01-11 04:53:00 2014-01-11 08:53:00 London Rome 373.61 240

t319 2014-01-11 08:03:00 2014-01-11 12:21:00 London Rome 613.89 258

t320 2014-01-11 10:32:00 2014-01-11 13:52:00 London Rome 477.52 200

t321 2014-01-11 13:56:00 2014-01-11 17:07:00 London Rome 633.00 191

t322 2014-01-11 16:39:00 2014-01-11 20:10:00 London Rome 380.15 211

t323 2014-01-11 19:37:00 2014-01-11 22:59:00 London Rome 486.53 202

t324 2014-01-12 04:53:00 2014-01-12 07:59:00 London Rome 409.45 186

t325 2014-01-12 08:03:00 2014-01-12 12:01:00 London Rome 413.84 238

t326 2014-01-12 10:32:00 2014-01-12 13:54:00 London Rome 504.22 202

t327 2014-01-12 13:56:00 2014-01-12 17:36:00 London Rome 608.40 220

t328 2014-01-12 16:39:00 2014-01-12 20:04:00 London Rome 571.71 205

t329 2014-01-12 19:37:00 2014-01-12 23:59:00 London Rome 546.09 262

t330 2014-01-05 04:03:00 2014-01-05 09:10:00 London Paris 459.85 307

t331 2014-01-05 08:03:00 2014-01-05 13:22:00 London Paris 595.21 319

t332 2014-01-05 11:22:00 2014-01-05 15:31:00 London Paris 331.87 249

t333 2014-01-05 13:47:00 2014-01-05 18:55:00 London Paris 486.81 308

t334 2014-01-05 16:31:00 2014-01-05 20:32:00 London Paris 460.64 241

t335 2014-01-05 19:10:00 2014-01-06 00:37:00 London Paris 420.75 327

t336 2014-01-06 04:03:00 2014-01-06 08:58:00 London Paris 412.58 295

t337 2014-01-06 08:03:00 2014-01-06 12:52:00 London Paris 402.06 289

t338 2014-01-06 11:22:00 2014-01-06 15:48:00 London Paris 380.87 266

t339 2014-01-06 13:47:00 2014-01-06 19:10:00 London Paris 473.21 323

t340 2014-01-06 16:31:00 2014-01-06 20:54:00 London Paris 426.74 263

t341 2014-01-06 19:10:00 2014-01-07 00:24:00 London Paris 422.16 314

t342 2014-01-07 04:03:00 2014-01-07 09:31:00 London Paris 338.86 328

t343 2014-01-07 08:03:00 2014-01-07 13:13:00 London Paris 322.37 310

Continued on next page

Methodology 61

Table 3.2 – continued from previous page

DateStart DateEnd Dest Start Dest End Cost Time (min)

t344 2014-01-07 11:22:00 2014-01-07 16:08:00 London Paris 605.23 286

t345 2014-01-07 13:47:00 2014-01-07 17:52:00 London Paris 448.36 245

t346 2014-01-07 16:31:00 2014-01-07 21:13:00 London Paris 531.31 282

t347 2014-01-07 19:10:00 2014-01-07 23:49:00 London Paris 460.54 279

t348 2014-01-08 04:03:00 2014-01-08 08:21:00 London Paris 381.22 258

t349 2014-01-08 08:03:00 2014-01-08 12:41:00 London Paris 610.84 278

t350 2014-01-08 11:22:00 2014-01-08 15:54:00 London Paris 356.65 272

t351 2014-01-08 13:47:00 2014-01-08 18:01:00 London Paris 469.67 254

t352 2014-01-08 16:31:00 2014-01-08 21:10:00 London Paris 346.91 279

t353 2014-01-08 19:10:00 2014-01-08 23:33:00 London Paris 390.24 263

t354 2014-01-09 04:03:00 2014-01-09 08:49:00 London Paris 533.95 286

t355 2014-01-09 08:03:00 2014-01-09 12:06:00 London Paris 483.85 243

t356 2014-01-09 11:22:00 2014-01-09 16:43:00 London Paris 491.30 321

t357 2014-01-09 13:47:00 2014-01-09 19:00:00 London Paris 580.21 313

t358 2014-01-09 16:31:00 2014-01-09 21:20:00 London Paris 337.15 289

t359 2014-01-09 19:10:00 2014-01-10 00:26:00 London Paris 603.08 316

t360 2014-01-10 04:03:00 2014-01-10 09:29:00 London Paris 523.18 326

t361 2014-01-10 08:03:00 2014-01-10 12:12:00 London Paris 519.93 249

t362 2014-01-10 11:22:00 2014-01-10 16:18:00 London Paris 327.52 296

t363 2014-01-10 13:47:00 2014-01-10 19:16:00 London Paris 604.73 329

t364 2014-01-10 16:31:00 2014-01-10 21:59:00 London Paris 326.82 328

t365 2014-01-10 19:10:00 2014-01-11 00:04:00 London Paris 376.43 294

t366 2014-01-11 04:03:00 2014-01-11 08:14:00 London Paris 600.27 251

t367 2014-01-11 08:03:00 2014-01-11 12:55:00 London Paris 357.93 292

t368 2014-01-11 11:22:00 2014-01-11 15:22:00 London Paris 443.39 240

t369 2014-01-11 13:47:00 2014-01-11 18:04:00 London Paris 557.46 257

t370 2014-01-11 16:31:00 2014-01-11 21:57:00 London Paris 495.37 326

t371 2014-01-11 19:10:00 2014-01-11 23:39:00 London Paris 548.15 269

t372 2014-01-12 04:03:00 2014-01-12 09:00:00 London Paris 378.76 297

t373 2014-01-12 08:03:00 2014-01-12 12:28:00 London Paris 447.82 265

t374 2014-01-12 11:22:00 2014-01-12 16:47:00 London Paris 475.03 325

t375 2014-01-12 13:47:00 2014-01-12 18:52:00 London Paris 394.76 305

t376 2014-01-12 16:31:00 2014-01-12 21:00:00 London Paris 632.40 269

t377 2014-01-12 19:10:00 2014-01-13 00:21:00 London Paris 529.44 311

The MOEA/D-ACO Algorithm is used in this step. As described in Section 2.5.5,
it initializes a set of ants with weight vectors uniformly distributed over the objective
space. They are then separated in groups, each with a pheromone matrix. After that, a
loop starts: each ant generate iteratively a solution, the solutions are evaluated and the
estimated Pareto Set is built and the pheromone matrices are updated. The loop ends
after 60 seconds, the established stop condition.

The resulting solution set has a 0.9937 relative hypervolume and 0.71 Pareto Success
Rate. The solutions are presented in Figure 3.2 and Table 3.3.

62 Methodology

Figure 3.2: Trip Solutions (normalized values)

Components Cost Time Destinations

t128-a187-t156-a69-t103-a277-t258 2570.47 1419.0 Lisbon->Paris->Rome->London->Lisbon
t128-a187-t204-a239-t306-a22-t7 3050.33 936.0 Lisbon->Paris->London->Rome->Lisbon
t128-a187-t204-a239-t306-a65-t13 2930.33 960.0 Lisbon->Paris->London->Rome->Lisbon
t128-a187-t204-a265-t312-a57-t13 2731.52 1002.0 Lisbon->Paris->London->Rome->Lisbon
t128-a187-t204-a299-t312-a32-t18 2856.58 989.0 Lisbon->Paris->London->Rome->Lisbon
t252-a221-t330-a120-t181-a65-t13 2683.23 1161.0 Lisbon->London->Paris->Rome->Lisbon
t256-a221-t330-a103-t181-a65-t13 2634.27 1231.0 Lisbon->London->Paris->Rome->Lisbon

Table 3.3: Optimization Results

Given the solutions, the decision support system aides the user to chose the best one.
The traveler assigns 0.7 importance to cost and 0.3 to travel time, leading to the ranking
presented in Table 3.4.

3.6 Summary

This chapter presents every step of the proposed solution, covering the problem repre-
sentation and data structure; data gathering, generation and treatment; optimization
methods and variations proposed, as well as a discussion about the chosen method and

Methodology 63

Components Cost Time Destinations Ranking

t128-a187-t204-a265-t312-a57-t13 2731.52 1002.0 Lisbon->Paris->London->Rome->Lisbon 0

t252-a221-t330-a120-t181-a65-t13 2683.23 1161.0 Lisbon->London->Paris->Rome->Lisbon 1

t128-a187-t204-a299-t312-a32-t18 2856.58 989.0 Lisbon->Paris->London->Rome->Lisbon 2

t256-a221-t330-a103-t181-a65-t13 2634.27 1231.0 Lisbon->London->Paris->Rome->Lisbon 3

t128-a187-t204-a239-t306-a65-t13 2930.33 960.0 Lisbon->Paris->London->Rome->Lisbon 4

t128-a187-t156-a69-t103-a277-t258 2570.47 1419.0 Lisbon->Paris->Rome->London->Lisbon 5

t128-a187-t204-a239-t306-a22-t7 3050.33 936.0 Lisbon->Paris->London->Rome->Lisbon 6

Table 3.4: Solution Ranking

robustness evaluation strategies; and the user interface for input and presenting the
optimization results.

On the next chapter, the experiments performed to test the system are described and
the results presented.

64

Chapter 4

Results

The methods presented in Chapter 3 were subject to several experiments in order
to evaluate their performance and study their characteristics. This chapter presents
the design, setup and results of these experiments for several instances of the trip
itinerary planning problem. The proposed methods were evaluated independently and in
comparison to each other, and the contribution of each element evaluated.

4.1 Experimental Definitions and Setup

4.1.1 Technical Information

All experiments were performed on a computer with the following specifications:

• Operating System: Windows 10 (version 1803)
• CPU: Intel i7 8700K 3.7 GHZ
• RAM: 8 GB DDR4

All computational implementation was developed using Python 3.6 and R. The code
and experimental results are stored at .

4.1.2 Problem Instances

There are several trip characteristics that define the problem complexity and affect the
optimization algorithm performance. They are:

65

https://bitbucket.org/gustavolvieira/gotravel

66 Results

1. Trip size, i.e. the number of destinations to be visited in the trip itinerary
2. Destination order restrictions
3. Allowed variation on the trip’s start and end dates
4. Allowed variation in the stay length defined for each destination
5. Accommodation and transports restrictions
6. Average number of transports options per day between two destinations
7. Average number of accommodation options per day on a destination

In an experimental perspective, an instance of the trip itinerary planning problem
is defined by the combination of these characteristics. Additional information of the
itinerary, such as destination names and departing dates, do not affect the optimization
results and are therefore disregarded.

The number of available solutions for the trip itinerary, both feasible and unfeasible,
is related to the problem complexity. Problems with more solutions have a bigger search
space and, thus, are harder to solve. The higher the trip size, the number of transports
and accommodation options and the flexibility (allowed variation) on stay lengths and
start and end dates, the higher the number of solutions and problem complexity. On
the other hand, restrictions related to accommodation, transportation and destinations
ordering reduce the number of valid solutions and make the problem easier.

The user is responsible for deciding items 1 to 5 when creating the trip itinerary. The
search space calculation presented in Section 3.1.5 helps estimate the impact of some of
these factors. The most significant one is the size of the trip, followed by the number of
accommodation and transportation options. Although disregarded in the search space
size expression, the ordering and stay variations also have a significant impact on the
complexity. The average number of transports and accommodations options depends
on external factors, but are affected by users restrictions. More restrictions reduces the
number of available options.

The problem instances used for the experiments were generated using the Random
Component Generator presented in Section 3.2. The trip characteristics listed can
be viewed as parameters for the generation of an instance. The use of an automated
generator allows total control over the parameters. From an experimental perspective,
this helps the analysis by making it possible to change one parameter without affecting
the others, which helps evaluating its effect.

The number of possible problem instances defined by the combination of all possible
definitions is infinite. The instances considered were restricted to a small subset to keep

Results 67

the experiments feasible and close to real world use cases. Unless otherwise stated, the
results presented were obtained with instances with trip sizes varying between 2 and 7
destinations and the following values for the other parameters:

• Average number of transports options: 6
• Average number of accommodation options: 6
• Destination ordering: unordered
• Allowed variation for trip start and end dates: 0 days
• Allowed variation for stay length in each destinations: 1 day

The average number of transports and accommodations values defined are estimations
of frequent values for trips itineraries, based on real world data collected. These values
correspond to the average number of options left after some are excluded due to the user
restrictions and the search space reduction method presented in Section 3.2.3.

The destination ordering was kept unordered as it allows for the maximum flexibility,
which is the main advantage of the proposed solution over regular methods for trip
planning. A maximum variation of 1 day is set for each destination. This value is
considered a reasonable compromise between small variations in the desired stay days
and a higher number of solutions, which may potentially lead to better itineraries.

For all instances generated, an estimated optimal Pareto Set was calculated. In
instances with up to 4 destinations, the exact set was obtained through exhaustive search.
For bigger problems, this is not viable. In such cases, the estimated set was generated
aggregating the solutions of several (at least 750) optimization executions and random
searches, with high time limits and varied parameters combinations.

While there is no guarantee that the estimated set is a good approximation of the
real Pareto set, there are indications that they are good enough approximations:

• In the optimization experiments, all the solutions obtained were always worse or
equal to the estimated set.
• For instances in which the exact solution is know, the estimated set was identical to

the exact one.

For all distributed computing experiments performed, 10 out of the 12 logical cores
present in the CPU were allocated to the processes. The remaining 2 were kept free so
that they would handle any background process and minimize external factors.

68 Results

4.1.3 Results Evaluation

Each solution is evaluated based on the travel time and cost, as presented in Section
3.1.3. The objective evaluations are given by Equations 4.1 and 4.2:

Cost:

F1(s) =
k+1∑
i=1

Ti.cost +
k∑
j=1

Aj.cost (4.1)

Travel Time:

F2(s) =
k+1∑
i=1

Ti.arrival_time − Ti.departure_time (4.2)

The hypervolume metric is used to evaluate the results of the solution sets obtained
by the optimization methods proposed. The hypervolume is calculated based on the
nadir point defined for each instance, as described in Section 2.6. In order to compare
the optimization results with the optimal solution, the relative hypervolume HVR is used.
It is given by:

HVR =
HVopt
HV ∗

where HVopt is the hypervolume of the optimization resulting solution set and HV ∗ is the
hypervolume of the estimated optimal Pareto Set. The closer the relative hypervolume is
to 1, the better is the result of the optimization.

The Pareto Success Rate (PSR) indicates the percentage of the Pareto Optimal
Solution found by the optimization:

PSR =
ParetoSolutionsFound

TotalParetoSolutions

Due to the stochastic nature of the optimization methods used, the results can be
different for each execution. In order to have a better representation of the behaviour of
each method, the average hypervolume of several executions is considered.

Results 69

The stop criterion for the optimization algorithms was execution time. Although
subject to external factors (such as processes in the background of the computer), these
occasional disturbances are minimized in the averaging processes of the several executions
of the methods. The execution time also provides a fair comparison criteria between
methods with very different average iteration times (e.g. regular MOACO and Local-
search MOACO). The maximum execution time was set at 80 seconds, as empirical
results demonstrated that all methods converge within this time for all experiments.
Convergence is defined as the moment when an iteration of the methods do not lead to
improvements in the relative hypervolume greater than 0.005.

For all methods, the Relative Hypervolume over time plot is presented. This rep-
resentation shows both the speed of convergence and the final convergence value for
the methods, and highlights trade-offs between speed and final quality. It also makes it
possible to compare the start-up times for different methods. In these plots, the shadowed
region represents the 95% confidence interval of all the executions, as seen in Figure 4.1.

Figure 4.1: Average relative hypervolume over time for a problem instance with 5 destinations.

Plots of optimization solutions on the objective space are also used for qualitative
evaluation, as in Figure 4.2. In such cases, the optimization execution represented is
selected randomly among all executions.

70 Results

Figure 4.2: Solution set obtained after the optimization of a 5 destination problem instance.

The summed up results for all experiments is presented as a table. It contains the
average and standard deviation of relative hypervolume at the 60 seconds mark, the
average and standard deviation of the iteration count and the average start-up time. The
start-up time is defined as the time necessary for the method to start and the first set of
solutions to be obtained.

All relative hypervolume comparisons performed take into account the average relative
hypervolume at the 60 seconds mark.

4.2 Experiments Results

This section presents the results for each method proposed, along with a brief commentary.
The results are evaluated based on the metrics outlined in Section 4.1.3. Figure 4.3
presents a summarized representation of the results of 4 different methods.

Results 71

Figure 4.3: Summarized results for MOACO, Distributed Local MOACO, Local MOEA/D-
ACO and MOEA/D-ACO.

4.2.1 Multiobjective Ant Colony Optimization (MOACO)

Figure 4.4 presents the relative hypervolume over time for executions of the MOACO
algorithm described in Section 2.5.3. These results are summed up in Table 4.1. The
following parameters values were used for the experiments:

• αl = 1 ∀l ∈ [1, L]

• βm = 2 ∀m ∈ [1,M]

• γ = 0.1

• ρ = 0.05

• τ0 = 1

• n = 30

The results indicate that, for smaller problems, the algorithm quickly converges
to solutions very close to estimated optimal Pareto set. As the problem size grows,
the quality of the results worsens and the convergence times increases. This increased
difficulty is expected, since the growth of the number of destinations very quickly leads
to a drastic increase in the complexity due to the combinatorial explosion in the size

72 Results

(a) 2 destinations (b) 3 destinations

(c) 4 destinations (d) 5 destinations

(e) 6 destinations (f) 7 destinations

Figure 4.4: Relative Hypervolume over time results for MOACO method on instances with 2
to 7 destinations

of search space, as discussed in Section 3.1.5. The start-up time is very small for all
problem sizes in this case.

Results 73

Destinations HV HV Std Iterations Iterations Std Start-up Time PSR

2 0.9972 0.0031 226.3500 2.2644 0.3895 0.984
3 0.9562 0.0221 179.0500 10.0473 0.5178 0.849
4 0.9481 0.0111 137.0923 2.0360 0.5611 0.644
5 0.8962 0.0166 109.6632 14.2324 0.7424 0.408
6 0.8852 0.0150 126.6000 1.5333 1.0363 0.317
7 0.8566 0.0175 96.0800 1.9271 1.3681 0.192

Table 4.1: Summarized results of MOACO experiments

4.2.2 Local Search MOACO

Figure 4.5 presents the relative hypervolume over time for executions of the Local Search
MOACO method described in Section 3.3.2. These results are summed up in Table 4.2.
The MOACO parameters are the same presented in 4.2.1. The Local search method
selected is first-improvement strict-dominance search.

Destinations HV HV Std Iterations Iterations Std Start-up Time PSR

2 1.0000 0.0000 78.6500 1.0137 1.7730 1
3 0.9851 0.0149 48.7667 0.7386 2.6390 0.803
4 0.9727 0.0102 30.3125 0.8887 3.3438 0.685
5 0.9125 0.0216 16.4632 1.4712 4.3776 0.475
6 0.8890 0.0198 14.2750 0.4994 7.3812 0.298
7 0.8582 0.0222 9.7400 0.4386 10.2604 0.208

Table 4.2: Summarized results of Local Search MOACO experiments

Overall, Local Search MOACO leads to better hypervolumes after convergence.
However, the Local Search method has a much higher start-up time compared to the
traditional MOACO method. This difference is more significant for bigger problems.
This is consequence of the added overhead of the Local Search method.

The number of iterations is also much smaller, due to the extra computational cost of
the Local-search, discussed on Section 3.3.2.

74 Results

(a) 2 destinations (b) 3 destinations

(c) 4 destinations (d) 5 destinations

(e) 6 destinations (f) 7 destinations

Figure 4.5: Relative Hypervolume over time results for Local Search MOACO method on
instances with 2 to 7 destinations

4.2.3 Distributed MOACO

Figure 4.6 presents the relative hypervolume over time for executions of the Distributed
MOACO method described in Section 3.3.3. These results are summed up in Table 4.3.

Results 75

The MOACO parameters are the same presented in 4.2.1. The number of cores used for
the tasks is 6.

(a) 2 destinations (b) 3 destinations

(c) 4 destinations (d) 5 destinations

(e) 6 destinations (f) 7 destinations

Figure 4.6: Relative Hypervolume over time results for Distributed MOACO method on
instances with 2 to 7 destinations

76 Results

Destinations HV HV Std Iterations Iterations Std Start-up Time

2 0.9999 0.0002 37.4000 1.5232 2.0439
3 0.9844 0.0058 37.1333 0.5416 1.9513
4 0.9581 0.0083 36.5667 0.4955 1.8710
5 0.8920 0.0224 34.9000 0.3958 1.9164
6 0.8698 0.0191 38.4667 0.5207 2.0418
7 0.8463 0.0241 33.4250 1.8559 2.2869

Table 4.3: Summarized results of Distributed MOACO experiments

The results indicates that the distributed implementation of the MOACO algorithm
is not a significant improvement compared to regular MOACO. Statistical tests show
that there are no significant differences between the hypervolume after convergence.

There is, however, a significant difference in the number of iterations. This difference
is higher for smaller problems, and get smaller as the number of destinations increases.
For all experiments with up to 7 destinations, the non-distributed MOACO method has
significantly more iterations. The hypervolume over time plots shows that the regular
MOACO method converges faster than the distributed approach.

The reason for this is that the distributed approach has some computational overhead
setting up the distribution structure and managing inter-process communications. In
addition to that, the distributed approach has a bottleneck after each iteration in which all
the solutions generated are evaluated and the pheromone matrices are updated. However,
the solution construction processes being distributed are very quick. The results indicate
that this method spends more time on the distribution overhead than on the actual
distributed process. As a consequence, the speed-up brought by the parallel computing
is overshadowed by the distribution slowdown, and the method in general performs less
iterations.

As the number of destinations on the trip increases, the solution construction process
becomes more complex. This increases the time spent on it, while the distribution
overhead cost stay the same. This is the reason why the relative difference in the number
of iterations of regular MOACO and Distributed MOACO becomes smaller as the problem
grows. However, for up to 7 destinations, there are no improvements with Distributed

Results 77

MOACO compared to regular MOACO is still better, as it converges faster without
decreases in quality.

Distributed Local Search MOACO

The next experiment shows the results of the same distribution approach applied to the
Local Search MOACO. The results are presented in Figure 4.7 and Table 4.4.

Destinations HV HV Std Iterations Iterations Std Start-up Time

2 1.0000 0.0000 34.2800 1.3121 2.1783
3 0.9996 0.0015 31.9778 0.3938 2.3604
4 0.9840 0.0028 27.7556 1.0361 2.5055
5 0.9279 0.0180 24.8833 0.3210 2.5029
6 0.9047 0.0147 23.0500 0.2179 3.1425
7 0.8803 0.0184 18.7625 0.4256 3.8479

Table 4.4: Summarized results of Distributed Local Search MOACO experiments

Considering the convergence hypervolume, the Distributed Local Search MOACO
method shows improvements for all trip sizes when compared to regular MOACO or
Distributed MOACO. As for the non-distributed Local-search MOACO, the difference
between the results is not statistically significant.

In terms of start-up time, however, the approach is only slightly worse than the
regular MOACO method and not significantly different than Distributed MOACO. It is
much better than the Local-search MOACO, though, which leads to better convergence
times.

4.2.4 MOEA/D-ACO

Figure 4.8 presents the relative hypervolume over time for problem instances solved by
the MOEA/D-ACO method described in Section 2.5.5. These results are summed up in
Table 4.5. The ant colony parameters used are the same presented in 4.2.1. Additional
parameters related to the MOEA/D method are:

78 Results

(a) 2 destinations (b) 3 destinations

(c) 4 destinations (d) 5 destinations

(e) 6 destinations (f) 7 destinations

Figure 4.7: Relative Hypervolume over time results for Distributed Local Search MOACO
method on instances with 2 to 7 destinations

• K = 5

• T = 4

• ∆ = 0.05× τmax
• ε = 1√

|C|

Results 79

where K is the number of groups, T is the neighborhood size, ∆ is the influence of the
current solution, τmax is the maximum pheromone value, ε is a modifier for the minimum
pheromone value and |C| is the size of the components set.

(a) 2 destinations (b) 3 destinations

(c) 4 destinations (d) 5 destinations

(e) 6 destinations (f) 7 destinations

Figure 4.8: Relative Hypervolume over time results for MOEA/D-ACO method on instances
with 2 to 7 destinations

80 Results

Destinations HV HV Std Iterations Iterations Std Start-up Time PSR

2 0.9999 0.0000 343.3600 2.7405 0.2659 0.978
3 0.9904 0.0053 270.5200 1.8137 0.3053 0.811
4 0.9877 0.0049 243.9000 4.3324 0.3789 0.692
5 0.9780 0.0070 260.0500 4.1440 0.3503 0.503
6 0.9274 0.0069 124.6923 1.4876 0.9071 0.435
7 0.9530 0.0100 97.7556 1.0145 1.1778 0.295

Table 4.5: Summarized results of MOEA/D-ACO experiments

The MOEA/D-ACO method shows improvements in the convergence hypervolume
compared to any of the MOACO methods variations. The statistical tests confirm that
the method is better than the previous ones. It also presents a high number of iterations,
a low start-up time and converges quickly.

Overall, the results show that the MOEA/D-ACO method is a strict improvement
over the previous ones for the problem instances considered.

4.2.5 Local-search MOEA/D-ACO

The results for the Local-search variant of the MOEA/D-ACO method are presented in
this Section. Figure 4.9 shows the relative hypervolume over time for the test problem
instance and the summed up results are brought in Table 4.6. The parameters used
are the same presented in 4.2.4. The Local search method selected is first-improvement
strict-dominance search.

The results indicate no statistically significant difference between the convergence
hypervolume of the presented method and the base MOEA/D-ACO approach. There is,
however, an increase in the start-up times. Overall, the Local-search integration does not
lead to improvements in the MOEA/D-ACO results for the problem instances considered.

Results 81

(a) 2 destinations (b) 3 destinations

(c) 4 destinations (d) 5 destinations

(e) 6 destinations (f) 7 destinations

Figure 4.9: Relative Hypervolume over time results for Local-search MOEA/D-ACO method
on instances with 2 to 7 destinations

4.2.6 Distributed MOEA/D-ACO

Figure 4.10 presents the relative hypervolume over time for executions of the Distributed
MOEA/D-ACO method, an extension of the MOEA/D-ACO described in Section 2.5.5.

82 Results

Destinations HV HV Std Iterations Iterations Std Start-up Time

2 1.0000 0.0000 82.6400 0.7940 0.9714
3 0.9883 0.0078 71.7778 1.8725 0.9921
4 0.9825 0.0069 61.5538 1.3013 1.3295
5 0.9687 0.0114 66.6667 7.7230 1.2426
6 0.9230 0.0065 26.7222 0.6151 3.8642
7 0.9376 0.0103 20.2200 0.4600 4.9903

Table 4.6: Summarized results of Local-search MOEA/D-ACO experiments

These results are summed up in Table 4.7. The parameters are the same presented in
4.2.4. The number of cores used for the tasks is 6.

Destinations HV HV Std Iterations Iterations Std Start-up Time

2 0.9992 0.0012 38.520 0.4996 1.8868
3 0.9745 0.0076 38.880 0.3250 1.9355
4 0.9717 0.0108 38.600 0.4899 1.8676
5 0.9561 0.0155 38.050 0.2179 1.8776
6 0.9222 0.0058 44.875 0.3307 1.9951
7 0.9394 0.0088 40.940 0.2375 2.1385

Table 4.7: Summarized results of Distributed MOEA/D-ACO experiments

Once again, no statistically significant difference of the convergence hypervolume is
noted between the Distributed MOEA/D-ACO method and the base approach. There is
a small increase in the start-up times, but it does not affect the convergence times. The
distributed approach brings no advantage to the MOEA/D-ACO method in the problem
instances considered.

Results 83

(a) 2 destinations (b) 3 destinations

(c) 4 destinations (d) 5 destinations

(e) 6 destinations (f) 7 destinations

Figure 4.10: Relative Hypervolume over time results for Distributed MOEA/D-ACO method
on instances with 2 to 7 destinations

4.2.7 Distributed Local-search MOEA/D-ACO

The Distributed Local-search MOEA/D-ACO experiment result summary is presented
on Table 4.8. Figure 4.11 shows the relative hypervolume over time for each test problem
instance. The parameters selected are the same as the ones presented on Section 4.2.6.

84 Results

(a) 2 destinations (b) 3 destinations

(c) 4 destinations (d) 5 destinations

(e) 6 destinations (f) 7 destinations

Figure 4.11: Relative Hypervolume over time results for Distributed Local Search MOEA/D-
ACO method on instances with 2 to 7 destinations

The proposed method follows the trend of other MOEA/D-ACO extensions and brings
no improvement compared to the base approach. There are no statistically significant
differences on the final relative hypervolume nor on the convergence times.

Results 85

Destinations HV HV Std Iterations Iterations Std Start-up Time

2 0.9992 0.0012 38.520 0.4996 1.8868
3 0.9745 0.0076 38.880 0.3250 1.9355
4 0.9717 0.0108 38.600 0.4899 1.8676
5 0.9561 0.0155 38.050 0.2179 1.8776
6 0.9222 0.0058 44.875 0.3307 1.9951
7 0.9394 0.0088 40.940 0.2375 2.1385

Table 4.8: Summarized results of Distributed Local-search MOEA/D-ACO experiments

4.3 Results Analysis

This section presents an in-depth analysis of the results, including a study on different
elements of the implemented solutions and a comparison of all the proposed methods.

4.3.1 Methods Comparison

Pairwise comparisons were performed for all methods presented. The statistical experi-
ment shows how the methods compare to each other in terms of relative hypervolume
after convergence. The experiments performed consider a confidence level of 95% and an
effect size of 0.01. The results for all pairs is presented on Figure 4.12.

Based on these results, the following observations can be made considering the test
problem instances:

• The MOEA/D-ACO method and all its variations are strictly better than MOACO
methods in terms of relative hypervolume. The only exception is the Local-search
MOACO method, which is statistically equivalent to the Distributed MOEA/D-
ACO.
• All MOEA/D-ACO based methods are statistically equivalent to each other in terms
of relative hypervolume. Thus, Local-search and Distributed variations were not
able to improve the methods results.
• All Local-search based MOACO methods are better than the other in terms of

relative hypervolume.

86 Results

Figure 4.12: Pairwise comparison of relative hypervolume of all methods presented.

Results 87

• None of the Distributed variations of the methods bring improvements in the relative
hypervolume in comparison to the non-distributed ones.

Thus, in terms of relative hypervolume, the MOEA/D-ACO methods provide the
best results, followed by the Local-search and Distributed Local-search MOACO. The
base MOACO and Distributed MOACO are the worst of the presented methods.

The start-up time is another feature that helps differentiate the methods. As a rule,
the base methods (MOACO and MOEA/D-ACO) have the smallest times, followed by
the Distributed and Distributed Local-search versions. The Local-search variations have
the biggest start-up times, specially for bigger problem instances.

These results suggest that, for problems with up to 7 destinations, the best method
is the base MOEA/D-ACO, given the high quality of solutions obtained and the lower
start-up times. This result indicates that the decomposition approach applied to ACO
methods can lead to better and more diverse solution sets in the Trip Itinerary Planning
Problem.

4.3.2 Local-search Effect

As discussed on Session 4.3.1, the Local-search can improve the base MOACO methods,
although it does not help MOEA/D-ACO. This result is better illustrated in Figure 4.13.

It is also noted that the Local-search methods have a much smaller number of iterations
and higher start-up times, as seen in Figure 4.14.

This is the result of the added computational cost of performing a local search after
each solution is generated. As discussed on Section 3.3.2, this search is non-trivial, as
it needs to check all restrictions in order to guarantee that only feasible solutions are
generated. Since every iteration takes more CPU time, the consequence is a smaller
number of iterations.

The solution construction process saves all queries results in memory, in order to
improve processing times. As a consequence, the computational cost of solution con-
struction is bigger in the first iteration and gets smaller in subsequent ones. This also
contributes to higher start-up times on Local-search methods.

88 Results

Figure 4.13: Local-search effect on relative hypervolume for MOACO and MOEA/D-ACO
methods

Even with higher start-up times and lower iterations, the MOACO method hypervol-
ume improves with Local-search. This indicates that it accelerates the convergence of
the algorithm and leads to better solutions in fewer iterations.

This phenomenon does not repeat on MOEA/D-ACO methods. The decomposition
based method already generates good solutions without Local-search. In this case, the
advantages of the Local-search are likely lost due to the lower number of iterations,
leading to an equivalent result.

4.3.3 Distributed Implementation Effect

For all methods, the results show that distributed approaches do not lead to better
hypervolumes. This is further illustrated by Figure 4.15, which shows the relative
hypervolume box-plot for distributed and base approaches of MOACO and MOEA/D-
ACO methods.

Results 89

Figure 4.14: Local-search effect on start-up times.

This result contradicts the initial expectations. The distributed approaches do not
change the algorithmic approach. Instead, they simply split the workload in concurrent
processes that run on different CPU cores, making better use of the computational
resources available. Thus, this approach should improve the performance based on the
number of cores.

It is important to notice that there is a small overhead to this approach, due to the
need to coordinate this distribution and wait for all processes to finish at junction points.
In this case, these junction points occur after every iteration. However, this overhead is
not enough to explain why the distributed approach did not improve the results.

In order to do so, it is necessary to consider the environment and language-specific
characteristics. The Python language uses a Global Interpreter Lock (GIL) that prevents
multiple threads from executing code at once. As a consequence, it is not possible to
implement parallel multi-threaded applications in Python.

90 Results

Figure 4.15: Distributed approach effect on hypervolumes of MOACO and MOEA/D-ACO
methods.

Thus, all parallelization in Python must be achieved via Multiprocessing. This way,
each process has its own interpreter. There is a big downside to this approach, however.
Since multiple processes do not have shared memory, all the necessary data must be
copied between the processes every time.

In the Trip Itinerary Optimization context, this has been proved problematic. The
solution construction process is a relatively fast operation, but it requires a lot of data:
all the trip specifications, components information and optimization methods. Every
time the operation is distributed between processes, all this data must be copied. This
increases both the necessary memory and processing power required. This operation
happens several times per iteration, based on the number of ants. Thus, the data copying
cost offsets the computational gains from the distributed approach.

This is an unfortunate consequence of the developed approach and the Python
language limitations. In future works, this problem could be eliminated by using another
language for the optimization process implementation.

Results 91

It is interesting to note that, when the distributed process is more computationally
intensive, the cost of copying data is mitigated. This can be seen comparing distributed
and regular Local-search approaches. The distributed ones have smaller start-up times,
as seen in Figure 4.16. This happens due to the increased cost of the Local-search process
in the solution construction.

Figure 4.16: Distributed approach effect on start-up times on Local-search methods.

4.3.4 Number of Groups on MOEA/D-ACO

The number of groups is an important parameter of the MOEA/D-ACO method. The
number of pheromone matrices is determined by it, since a single pheromone matrix
is used for each group. These shared pheromone matrices is a way an ant exchanges
information with other ants and contributes to their search.

However, the method also introduces many other new features to the base MOACO
method, such as: objective decomposition; best solutions contribution to the construction
process; pheromone limits; neighborhood information exchange and best component
selection probability.

In order to determine how important the number of groups is, an experiment on the
parameter effect was performed. To do so, all test problem instances were solved using

92 Results

the base MOEA/D-ACO method with different group sizes, and the relative hypervolume
evaluated. The summed-up results are presented in Figure 4.17.

Figure 4.17: Relative hypervolume distribution for MOEA/D-ACO with different number of
groups.

The result indicates that there is no significant difference in the hypervolume distri-
bution due to number of groups in the MOEA/D-ACO method for the Trip Itinerary
Planning Problem. Statistical tests performed with a significance level of 0.05 confirm
this conclusion.

Based on the results, it is possible to conclude that the optimization advantages of
the MOEA/D-ACO method on the problem are not consequence of the separation of
ants in groups. It is possible that this factor is more important for problems with higher
dimensionality, though.

Results 93

4.4 Trip Size Analysis

The number of destinations on an itinerary is the most influential factor on the search
space size, as discussed in Section 3.1.5. Therefore, the size of the trip has a big impact
on the instance complexity. The growth in the number of destinations eventually leads
to a combinatorial explosion. It is, therefore, the main limitation for the Trip Itinerary
Planning Problem.

The complete search space was evaluated for the test instances with up to 4 desti-
nations. Figure 4.18 shows the incredible growth with the increase on the number of
destinations. Instances with more than 4 destinations were not included because the
exhaustive search space evaluation is unfeasible for bigger problems.

This shows that the problems get harder to solve as they grow, until they cannot be
solved in feasible time. This can be observed in the test problems. As the size of the
problem grows, the convergence time increases and the quality of the solutions found
decreases. Figures 4.19 shows the decrease in the quality with problem growth.

It is interesting to note that there is an outlier for this problem. For all MOEA/D-ACO
methods, the relative hypervolume for the 6 destination problem instance is worse than
the 7 destination counterpart, as shown in Figure 4.10. The most likely explanation for
this is that the method and parameters chosen are very well adjusted to the test instance
with 7 destinations (or badly adjusted for the 6 destination instance). A larger number
of tests on different instances would probably change this, but were not performed due
to time limitations.

The combinatorial explosion limits the maximum size that can be solved by the
proposed methods in reasonable time. All the tests were performed with up to 7
destinations due to the high cost of calculating the approximated Pareto Front. For 8
or more destinations, it would take a very long time to obtain a good estimated front.
Thus, it is not possible to determine how well the methods work with problems with 8 or
more destinations.

However, the results with up to 7 destinations indicate that they work well for the
problem. Even with worse relative hypervolumes in comparison to the optimal front, it
is possible that the methods would provide better solutions than current tools for such
situations.

94 Results

Figure 4.18: Search space size for problems with 2, 3 and 4 destinations.

Furthermore, itineraries with more than 7 destinations are quite rare. Thus, the
proposed method works very well for the majority of the real world itinerary planning
problems.

4.5 Restrictions Effects and Discussion

In the Trip Itinerary Planning Problem, the size of an instance is primarily determined by
the number of destinations on the itinerary, as discussed in Section 4.4. Other restrictions,

Results 95

Figure 4.19: Relative hypervolume distribution for Distributed Local-search MOACO with
different number of destinations.

however, also have a big influence on the instance complexity. This section provides a
brief analysis on these restrictions effects.

The first one to consider is flexibility on dates. This is present both on variations on
the trip’s start and end dates and on the stay length defined for each destination. The
higher the range of accepted dates for departure or arrival, the more flexible the trip is.
The same is true for more variations on stay lengths for each destination. This leads to
an increase in the complexity, due to the higher number of feasible solutions.

The order of the destinations is also an important factor to the problem complexity.
Itineraries with unordered destinations have more solutions options and a bigger search
space. Defining the order of some or all destinations as a restriction can greatly reduce
the problem complexity.

A final important factor is the number of transportation or accommodation options for
each branch of the trip. More options increase the problem complexity. Even though this

96 Results

Figure 4.20: Relative hypervolume distribution for MOEA/D-ACO with different number of
destinations.

is an uncontrollable factor, this number is reduced when transportation or accommodation
restrictions are defined. Thus, it is important to also consider the average number of
options as well.

Figure 4.21 illustrates how different restrictions affect the search space size. In order
to do so, the complete search space size was calculated for problems with different
restrictions in stay lengths, destination order and average number of components at each
step. The test problem instances with unordered destinations, stay length of 1 day for
all destinations and an average number of 6 components at each step is also included as
reference.

The results indicate that the restrictions greatly reduce the problem size. The
higher the number of destinations, the greater the effect. This results indicate that
the introduction of restrictions is a possible way to solve bigger problems instances in
reasonable time.

Results 97

4.6 Summary

The results indicate that the proposed methods work very well for itinerary planning
problems with up to 7 destinations. The best methods converge in up to one minute even
for the bigger problems, and obtain solution sets very close to the optimal estimated
Pareto Front.

The tested MOEA/D-ACO method is verified to be a strict improvement over
the traditional MOACO method, though the division of ants in groups does not play
a prominent role in this improvement in the considered problem. The Local-search
improvement helps the traditional MOACO method, but is not so effective in the
MOEA/D-ACO approach. The distributed implementation does not improve the quality
in either approach, although this is likely due to programming language limitations and
implementation.

The trip size is confirmed as the most limiting characteristic of the problem, eventually
leading to a combinatorial explosion as it grows. Other problem restrictions, such as
destinations ordering, stay length on destinations and accommodation and transportations
restrictions can be used a way to reduce the problem complexity growth.

98 Results

Figure 4.21: Restrictions effects on search space size for problems with 2, 3 and 4 destinations.

Chapter 5

Conclusion

This Chapter presents a final analysis of the Trip Itinerary Planning Problem and the
proposed optimization methods. It covers the work contributions and applicability in
real world situations, current limitations and future work proposals.

5.1 Contributions and Applicability

5.1.1 Trip Itinerary Planning System

This work presented and discussed the Trip Itinerary Planning Problem as an application
and extension of the Traveling Salesman Problem with Time Windows with constraints
and proposes multiobjective optimization methods to solve it, minimizing cost and travel
time. In addition, a data gathering and pre-processing framework is presented, as well as
a decision support method. These elements together compose a system that can help
users solve trip planning problems and find the best flights and accommodations for their
trips, according to their preferences.

The main characteristics of the system as a trip planning tool are:

• Flexibility on trip itinerary definitions: users can define a range of acceptable
departure and arrival dates, the desired stay length range for each destination, the
desired destination order (if any) and accommodations and flights restrictions.
• Data gathering system that automatically determines all the information needed

based on the itinerary definitions.

99

100 Conclusion

• Data pre-processing system that eliminates sub-optimal flights and hotels from the
options gathered, reducing the search space.
• Optimization method that can determine near-optimal solutions for trips with up

to 7 destinations in up to one minute.
• Decision support system that ranks solutions based on the user’s preferences and

can be easily tuned.

Currently there are no other known trip planning tools that allows so much flexibility
as the proposed solution. This increased flexibility allows users to define exactly what
they want for the trip and perform a single search. It also leads to a bigger search space,
in which better solutions might be found. Finally, once the itinerary definitions are set,
the system is able to quickly optimize the problem and provide the user with a large
number of high quality solutions.

This way, the proposed solution might represent a big improvement to the trip
planning experience. Since it evaluates many more possible trip solutions than a user
could do manually, it can find solutions with better quality. The speed and ease of use
also helps making the task of searching and buying flights tickets and booking hotels
much easier. Finally, the user has full control over every step of the process, from the
definition of every detail in the itinerary to the choice of the final selected solution, which
preserves the user’s autonomy.

In short, the system offers better results with less time and effort from the user,
providing a much better trip planning experience. This can be a great competitive
advantage for any flight and/or hotel e-commerce, and bring progress and improvements
to the online tourism market.

5.1.2 Ant Colony Optimization Application

In addition to the practical contributions, this work also explores the application of a
classic literature optimization method to the real world Trip Planning Problem, as well
as extensions of this method.

The Ant Colony Optimization method is one of the main techniques for combinatorial
optimization problems, as well as its extension for multiobjective problems, the Multi-
objective Ant Colony Optimization (MOACO). The use of Local Search and Distributed
extensions are also established in the literature. The MOEA/D-ACO method is a newer
method with promising results for multiobjective problems.

Conclusion 101

The results of the methods applications to the Trip Itinerary Planning Problem
reinforces their applicability to complex combinatorial optimization problems. The use
of Local-search extensions for the MOACO method led to improvements, which shows
the benefit of these hybrid approaches. The MOEA/D-ACO was strictly better than the
base MOACO method for the problem, which suggests that the changes proposed in the
method are beneficial and can improve the optimization results. It is noted, however,
that not all elements introduced in this new approach are necessary for this improvement.
This is the case for the ant grouping in the proposed problem.

Since the implementation of distributed approaches was hindered by language limita-
tions, it was not possible to evaluate how well they would contribute to the presented
methods. It is noted, however, that these approaches work better with fewer and more
computationally costly processes than with many cheap ones.

5.1.3 Limitations

The Trip Itinerary Planning Problem suffers from combinatorial explosion as the number
of destinations in the itinerary grows, which leads to problems so large that they cannot
be treated. This work only presents experiments with problems with up to 7 destinations,
as estimating the optimal Pareto Solutions for bigger problems was too costly given the
experimental design and the time and hardware constraints.

Given these limitations, it is not possible to know how well the proposed methods work
for bigger problems. Given the complexity of these problems, however, it is reasonable to
expect that the methods should work better than manual planning.

In addition, it was verified that restrictions can be used to greatly reduce the problem
complexity. This way, bigger problems can be solved in reasonable time with the use of
restrictions, such as destinations order. This should allow itineraries of up to 9 or 10
destinations to be solved in reasonable time with reasonable quality, which covers most of
an average traveler needs. The use of restrictions, however, only delays the combinatorial
explosion, and is not a solution for every problem.

The system is mostly suited to average traveler use cases for personal trips, focusing
on obtained good solutions for small and medium trips in a short time. A quick solution
is very important for the typical user on the web. In such cases, a large amount of users
might use the system, which require that each trip planning does not put a big strain on
a server.

102 Conclusion

Despite this, the trip planning solution might also be useful for other scenarios,
such as business. A company that requires its employees to travel a lot might need
solutions that work for bigger itineraries. In such cases, however, the need for such short
optimization times is smaller. Thus, bigger itineraries could also be accommodated with
bigger optimization times and better processing power. In such cases, a better distributed
optimization method could work very well.

Finally, it is important to note that the language used for the project development,
Python, is not among the best in terms of performance. Even with recent developments
and code optimization, it falls behind other options, such as C, C# or even Julia. The
implemented method works well as a proof of concept and solves most of the use cases
proposed, being a good solution for the Trip Itinerary Planning Problem. Nevertheless,
it could benefit of a re-implementation using a performance-focused language.

5.2 Future Work Proposals

The proposed method solves the Trip Itinerary Planning Problem and achieves the
established objectives. While it demonstrates that the problem can be solved, it is still
not a complete product. Besides, the results achieved suggest that improvements can
still be made to the method.

This section covers possible improvements and additions that can either help shape the
proposed solution into a complete product for the end user or continue the development
of the optimization method and the technical investigations performed, improving the
results found.

5.2.1 Data Gathering

The one thing preventing the developed Trip Itinerary Planning System to be used in
real world situations is access to the necessary data. As discussed before, real-time access
to this data is hard and expensive. Even so, it is a key point for a finished product.

There are two main ways to get the necessary data: either buy it from a provider, or
arrange a partnership with another company that already has access to this information.
Both are valid options, and the choice depends primarily on the available resources and
opportunities.

Conclusion 103

Either way, it is important that this data is up to date with hotels and airlines and
is available to be consulted without access limitations. Access to complete and correct
information is key for any optimization system.

5.2.2 User Experience and Interface

Any system intended for final users and widespread access need to focus on user experience.
The user interface plays a paramount part in this.

In order to interact with the system and plan their trips in a satisfactory way, users
need an interface that is easy to use and understand, and yet conveys all necessary
information and allows full control. Among other elements, this interface should have:

• An itinerary definition page in which users can quickly define the important parts of
their trip, such as destinations and dates. This page should also provide advanced
options for tweaking details such as dates flexibility, destinations orders and hotels
and flights restrictions.
• A solution selection page in which the user views all optimization results for their
trip and selects the desired solution. The solutions should be ranked according
to decision support methods and the user should be able to quickly tweak their
preferences. All proposed itineraries should be accompanied by links that direct the
user to the service provider, so they can buy the tickets and make hotel reservations.
• A trip visualization page showing the selected trip itinerary. This page should
highlight all important information and provide ways to check the details as well.
Interactive and visual representations, such as maps, would greatly benefit the user
experience. The user should also be able to return to previous pages and change
the trip definitions and chosen solution, if necessary.

Other non-essential features that could benefit the user experience are social fea-
tures, such as itinerary sharing, team planning and comments; profile information and
travel history; and links with useful information about the chosen destinations and
recommendations, among others.

This interface should be developed as a website, hosted and made available to the
public. The website format is the best in order to provide access to a wider audience. In
the future, it can also be adapted to phone apps.

104 Conclusion

5.2.3 Optimization Improvements

Complexity Reduction Methods

The results presented show that restrictions can be used to greatly reduce the complexity
of a problem instance. Therefore, restrictions can be used to simplify very large problems
and help their solution.

While the restrictions are usually defined by users, they can also be automatically
introduced when a very large problem instance is detected. A pre-optimization data
analysis can help choosing good restrictions that are more likely to remove bad solutions
and keep the better ones.

A possible way to do this is using Monte-Carlo simulations to sample some solutions
and, based on these results, determine destinations orders that usually lead to bad
solutions. These orders would then be excluded via restrictions before the optimization
process.

It is likely that some destination orders very often lead to bad solutions. This is the
case of destination orders that increase the total distance covered on all flights, since the
distance directly impacts on travel times and costs.

Distributed Implementation

The results indicate that the distributed implementations of the proposed methods did
not lead to better results. However, as discussed, this result is very likely consequence of
language limitations.

A proper distributed implementation allows the method to make full use of the
hardware available and greatly increase the algorithms convergence time. In addition,
distributed implementations can be used to reduce the time difference between itineraries
of different sizes and reduce variation in user wait time. This can be done assigning
more CPU cores to complex problem instances, and keeping smaller instances bound to
a single core.

The proposed distributed implementation can be done using a language more appro-
priate to parallelization.

Conclusion 105

Algorithm Improvements

The results indicate that some elements of the MOEA/D-ACO (such as the number of
ant groups) algorithm are not impactful in the final result. These elements might increase
the computational cost of the method without any meaningful contribution.

Statistical experiments can be performed assessing the impact of every element of
the heuristic. Should more elements with null impact be identified, they can be removed
from the method. This would lead to a striped down version of the method that keeps
all important parts and would probably have a better performance.

In addition to this, hyperparameter optimization methods could be used to improve
the selected heuristic parameter, which could lead to better results.

106

References

[1] O. Ali and D. VanOudheusden. Logistics planning for agricultural vehicles. In
2009 IEEE International Conference on Industrial Engineering and Engineering
Management, pages 311–314. IEEE, dec 2009.

[2] Daniel Angus and Clinton Woodward. Multiple objective ant colony optimisation.
Swarm Intelligence, 3(1):69–85, 2009.

[3] Jinling Bao, Xiaochun Yang, Bin Wang, and Jiaying Wang. An Efficient Trip
Planning Algorithm under Constraints. 2013 10th Web Information System and
Application Conference, 1:429–434, 2013.

[4] Carmen Berne, Margarita Garcia-Gonzalez, and Jose Mugica. How ICT shifts the
power balance of tourism distribution channels. Tourism Management, 33(1):205–214,
2012.

[5] Christian Blum. Hybrid metaheuristics in combinatorial optimization: A tutorial.
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics), 7505 LNCS(6):1–10, 2012.

[6] Julio Brito, Airam Expósito-Márquez, and José A Moreno. A fuzzy GRASP algorithm
for solving a Tourist Trip Design Problem. In IEEE International Conference on
Fuzzy Systems, 2017.

[7] Dimitrios Buhalis. eAirlines: strategic and tactical use of ICTs in the airline industry.
Information & Management, 41(7):805–825, 2004.

[8] Dimitrios Buhalis and Rob Law. Progress in information technology and tourism
management: 20 years on and 10 years after the Internet - The state of eTourism
research. Tourism Management, 29(4):609–623, 2008.

[9] Bernd Bullnheimer, Richard F Hart, and Christine Straub. A New Rank-Based
Version of the Ant System: A Computational Study. Central European Journal of

107

108 REFERENCES

Operations Research and Economics, 7(1):25 – 38, 1999.

[10] Roberto Wolfler Calvo. A New Heuristic for the Traveling Salesman Problem with
Time Windows. Transportation Science, 34(1):113–124, 2000.

[11] B. Chakraborty, T. Maeda, and G. Chakraborty. Multiobjective route selection for
car navigation system using genetic algorithm. In Proceedings of the 2005 IEEE
Midnight-Summer Workshop on Soft Computing in Industrial Applications, 2005.
SMCia/05., pages 190–195. IEEE, 2005.

[12] Chonlatis Charoenwong and Somchai Pathomsiri. Vehicle routing for improving
financial performance: A case study of a freight transportation service provider in
Thailand. In 2015 4th International Conference on Advanced Logistics and Transport
(ICALT), pages 263–268. IEEE, may 2015.

[13] Carlos a Coello Coello, Gary B. Lamont, and David a. Van Veldhuizen. Evolu-
tionary Algorithms for Solving Multi-Objective Problems (Genetic and Evolutionary
Computation). Springer, 2007.

[14] Rodrigo Ferreira Da Silva and Sebastin Urrutia. A General VNS heuristic for the
traveling salesman problem with time windows. Discrete Optimization, 7(4):203–211,
2010.

[15] Kalyanmoy Deb. Multi-objective optimization using evolutionary algorithms: an
introduction. Multi-objective evolutionary optimisation for product design and
manufacturing, pages 1–24, 2011.

[16] Jacques Desrosiers, Yvan Dumas, Marius M. Solomon, and François Soumis. Network
Routing. Handbooks in Operations Research and Management Science, 8:35–139,
1995.

[17] A. Divsalar, P. Vansteenwegen, and D. Cattrysse. A variable neighborhood search
method for the orienteering problem with hotel selection. International Journal of
Production Economics, 145(1):150–160, 2013.

[18] Soufiene Djahel and John Murphy. A comparative study of vehicles’ routing algo-
rithms for route planning in smart cities. In 2012 First International Workshop on
Vehicular Traffic Management for Smart Cities (VTM), pages 1–6. IEEE, nov 2012.

[19] Marco Dorigo and Christian Blum. Ant colony optimization theory: A survey.
Theoretical Computer Science, 344(2-3):243–278, 2005.

REFERENCES 109

[20] Marco Dorigo, Vittorio Maniezzo, and Alberto Colorni. Ant system: Optimization
by a colony of cooperating agents. IEEE Transactions on Systems, Man, and
Cybernetics, Part B: Cybernetics, 26(1):29–41, 1996.

[21] Marco Dorigo and Thomas Stützle. Ant Colony Optimization. Bradford Company,
2004.

[22] A E Eiben and S K Smit. Evolutionary Algorithm Parameters and Methods to Tune
Them. In Autonomous search, pages 15–36. Springer, 2011.

[23] A. E. Eiben and J. E. Smith. Introduction to Evolutionary Computing. Springer,
2008.

[24] A.E. Eiben and S.K. Smit. Parameter tuning for configuring and analyzing evolu-
tionary algorithms. Swarm and Evolutionary Computation, 1(1):19–31, 2011.

[25] Filippo Focacci, Michela Milano, and Andrea Lodi. Solving TSP with time win-
dows with constraints. Proceedings of the 1999 international conference on Logic
programming, pages 515–529, 1999.

[26] Carlos M Fonseca and Peter J Fleming. On the Performance Assessment and
Comparison of Stochastic Multiobjective Optimizers. In International Conference
on Parallel Problem Solving from Nature, pages 584—-593. Springer, 1996.

[27] A. Garcia, P. Vansteenwegen, W. Souffriau, O. Arbelaitz, and M.T. Linaza. Solving
Multi Constrained Team orienteering Problems to Generate Tourist Routes, 2009.

[28] C. García-Martínez, O. Cordón, and F. Herrera. A taxonomy and an empirical
analysis of multiple objective ant colony optimization algorithms for the bi-criteria
TSP. European Journal of Operational Research, 180(1):116–148, 2007.

[29] Damianos Gavalas, Charalampos Konstantopoulos, Konstantinos Mastakas, Gram-
mati Pantziou, and Nikolaos Vathis. Heuristics for the time dependent team orien-
teering problem: Application to tourist route planning. Computers & Operations
Research, 62:36–50, 2015.

[30] Michel Gendreau and Jean-Yves Potvin. Handbook of Metaheuristics, volume 2.
Springer, 2010.

[31] D. Gilbert and J. Abdullah. A study of the impact of the expectation of a holiday
on an individual’s sense of well-being. Journal of Vacation Marketing, 8(4):352–361,
2002.

110 REFERENCES

[32] David E Goldberg. Genetic Algorithms in Search, Optimization and Machine
Learning. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1st
edition, 1989.

[33] Mhand Hifi and Lei Wu. A hybrid metaheuristic for the Vehicle Routing Problem
with Time Windows. In 2014 International Conference on Control, Decision and
Information Technologies (CoDIT), pages 188–194. IEEE, nov 2014.

[34] Aleksandar Jevtic, Diego Andina, Aldo Jaimes, Jose Gomez, and Mo Jamshidi.
Unmanned Aerial Vehicle route optimization using ant system algorithm. In 2010
5th International Conference on System of Systems Engineering, pages 1–6. IEEE,
jun 2010.

[35] Korhan Karabulut and M. Fatih Tasgetiren. A discrete artificial bee colony algorithm
for the traveling salesman problem with time windows. 2012 IEEE Congress on
Evolutionary Computation, pages 1–7, 2012.

[36] L. Ke, Q. Zhang, and R. Battiti. MOEA/D-ACO: A Multiobjective Evolutionary
Algorithm Using Decomposition and AntColony. IEEE Transactions on Cybernetics,
43(6):1845–1859, 2013.

[37] Kian Sheng Lim, Salinda Buyamin, Anita Ahmad, Mohd Ibrahim Shapiai, Faradila
Naim, Marizan Mubin, and Dong Hwa Kim. Improving Vector Evaluated Particle
Swarm Optimisation Using Multiple Nondominated Leaders. The Scientific World
Journal, 2014, 2014.

[38] Manuel López-Ibáñez and Christian Blum. Beam-ACO for the travelling salesman
problem with time windows. Computers and Operations Research, 37(9):1570–1583,
2010.

[39] Thibaut Lust and Jacques Teghem. Two-phase Pareto local search for the biobjective
traveling salesman problem. Journal of Heuristics, 16(3):475–510, jun 2010.

[40] Nuri Ozalp, Ozgur Koray Sahingoz, and Ugur Ayan. Autonomous multi unmanned
aerial vehicles path planning on 3 dimensional terrain. In 2014 22nd Signal Processing
and Communications Applications Conference (SIU), pages 228–231. IEEE, apr
2014.

[41] Qingfu Zhang and Hui Li. MOEA/D: A Multiobjective Evolutionary Algorithm
Based on Decomposition. IEEE Transactions on Evolutionary Computation,
11(6):712–731, 2007.

REFERENCES 111

[42] Singiresu S Rao. Engineering Optimization: Theory and Practice. John Wiley &
Sons, 2009.

[43] Hassan Sarhadi and Keivan Ghoseiri. An ant colony system approach for fuzzy
traveling salesman problem with time windows. The International Journal of
Advanced Manufacturing Technology, 50(9):1203–1215, Oct 2010.

[44] Thomas Stützle and Holger H. Hoos. MAX-MIN Ant System. Future Generation
Computer Systems, 16(8):889–914, 2000.

[45] Kadri Sylejmani and Agni Dika. Solving touristic trip planning problem by using
taboo search approach. International Journal of Computer Science Issues (. . . ,
8(5):139–149, 2011.

[46] Kadri Sylejmani, Atdhe Muhaxhiri, Agni Dika, and Lule Ahmedi. Solving tourist
trip planning problem via a simulated annealing algorithm. In Information and
Communication Technology, Electronics and Microelectronics (MIPRO), 2014 37th
International Convention on, pages 1124–1129. IEEE, 2014.

[47] El Ghazali Talbi. A Taxonomy of Hybrid Metaheuristics. Journal of Heuristics,
pages 541–564, 2002.

[48] El Ghazali Talbi. Metaheuristics from design to implementation, volume 74. John
Wiley & Sons, Inc., 20029.

[49] S. Teng, E. Chan, C. Yang, M. Yu, and S. H. Tan. An efficient solution framework for
a large scale delivery problem. In 2014 IEEE International Conference on Industrial
Engineering and Engineering Management, pages 647–651. IEEE, dec 2014.

[50] P. Tompkins, A. Stentz, and D. Wettergreen. Global path planning for mars
rover exploration. In 2004 IEEE Aerospace Conference Proceedings (IEEE Cat.
No.04TH8720), volume 2, pages 801–815. IEEE, 2004.

[51] Evangelos Triantaphyllou. Multi-Criteria Decision Making Methods: A Comparative
Study. Springer, 2000.

[52] Eder Lúcio Trindade. Um estudo sobre algoritmos de busca em grafos em tempo real.
PhD thesis, PUC, 2009.

[53] Anupam Trivedi, Dipti Srinivasan, Krishnendu Sanyal, and Abhiroop Ghosh. A
survey of multiobjective evolutionary algorithms based on decomposition. IEEE
Transactions on Evolutionary Computation, 21(3):440–462, 2017.

112 REFERENCES

[54] David H. Wolpert and William G. Macready. No free lunch theorems for optimization.
IEEE Transactions on Evolutionary Computation, 1(1):67–82, 1997.

[55] WTTC. World 2018 Annual Research: Key facts. Technical report, World Travel
and Tourism Council, 2018.

[56] Li Yanfeng, Gao Ziyou, and Li Jun. Vehicle routing problem in dynamic urban
traffic network. In ICSSSM11, pages 1–6. IEEE, jun 2011.

[57] E. Zitzler, L. Thiele, M. Laumanns, C. Da Fonseca, and V. Da Fonseca. Performance
assessment of multiobjective optimizers: an analysis and review. Evolutionary
Computation, IEEE Transactions on, 7(2):117–132, 2003.

[58] Eckart Zitzler, Dimo Brockhoff, and Lothar Thiele. The Hypervolume Indicator
Revisited: On the Design of Pareto-compliant Indicators Via Weighted Integration.
Evolutionary Multi-Criterion Optimization, 4403:862–876, 2007.

[59] Eckart Zitzler, Marco Laumanns, and Lothar Thiele. SPEA2: Improving the Strength
Pareto Evolutionary Algorithm. TIK-report, 103:95–100, 2001.

	List of figures
	List of tables
	Introduction
	Motivation
	Objectives
	Dissertation Outline

	Theory Overview and Literature Review
	Trip Planning Literature
	Optimization Concepts
	Optimization Method Evaluation
	Optimization Methods
	Ant Colony Optimization
	Local Search

	Multi-objective Optimization
	Dominance and the Pareto Frontier
	Diversity Preservation for Multi-objective Problems
	Multi-objective Ant Colony Optimization (MOACO)
	Multi-objective Evolutionary Algorithm Based on Decomposition (MOEA/D)
	MOEA/D-ACO
	Hybrid Meta-heuristics and Two-Phase Pareto Local Search
	Performance Metrics for Multiobjective Problems

	Hyperparameter Selection
	Decision Support Methods
	Summary

	Methodology
	Problem Representation
	Data Structure
	Solution Structure
	Objective Functions
	Problem Restrictions
	Search Space

	Data Gathering, Processing and Generation
	Data Source
	Data Querying
	Search Space Reduction

	Optimization
	Multiobjective Ant Colony Optimization
	Local-search MOACO
	Distributed MOACO
	MOEA/D-ACO
	Method Choice Considerations
	Hyperparameter Tuning
	Robustness evaluation

	Decision Support
	Example
	Summary

	Results
	Experimental Definitions and Setup
	Technical Information
	Problem Instances
	Results Evaluation

	Experiments Results
	Multiobjective Ant Colony Optimization (MOACO)
	Local Search MOACO
	Distributed MOACO
	MOEA/D-ACO
	Local-search MOEA/D-ACO
	Distributed MOEA/D-ACO
	Distributed Local-search MOEA/D-ACO

	Results Analysis
	Methods Comparison
	Local-search Effect
	Distributed Implementation Effect
	Number of Groups on MOEA/D-ACO

	Trip Size Analysis
	Restrictions Effects and Discussion
	Summary

	Conclusion
	Contributions and Applicability
	Trip Itinerary Planning System
	Ant Colony Optimization Application
	Limitations

	Future Work Proposals
	Data Gathering
	User Experience and Interface
	Optimization Improvements

	References

